Regulatory Realities – Redefining Benefit of Lung Transplant in the Current Era

Gundeep S Dhillon, MD, MPH
Associate Professor of Medicine
Medical Director, Lung & Heart-Lung Transplantation Program
Stanford University School of Medicine
Disclosure

I have no conflicts of interest to declare
Background

Organ Allocation Principles

- Based upon medical urgency
- Avoid futile transplants
- Minimize the effect of waiting time
- Broader geographic sharing

DHHS. OPTN Final Rule. 42 CFR-Part 121. 1999
IOM Report 2000
Background
Lung Allocation Score (LAS) Development

- Developed by the lung allocation subcommittee of the OPTN & the SRTR
- Transplant candidates > 12 years of age
- Allocation based on a lung allocation score, rather than waiting time
- Implemented in May 2005

LAS Calculation

1. Waitlist urgency measure (WL\textsubscript{i}): Expected days lived in next year on waiting list
2. Post-transplant survival measure (PT\textsubscript{i}): Expected days lived during 1st year post-transplant
3. Benefit\textsubscript{i} = PT\textsubscript{i} – WL\textsubscript{i}
4. Raw score = Benefit\textsubscript{i} – WL\textsubscript{i} = PT\textsubscript{i} – 2* WL\textsubscript{i} (Range -730 to 365)
5. LAS is obtained by normalizing the raw score (Range 0 to 100)
LAS Calculation

1. Waitlist urgency measure (WL_i): Expected days lived in next year on waiting list
2. Post-transplant survival measure (PT_i): Expected days lived during 1st year post-transplant
3. Benefit_i = PT_i − WL_i
4. Raw score = Benefit_i − WL_i = PT_i − 2* WL_i (Range −730 to 365)
5. LAS is obtained by normalizing the raw score (Range 0 to 100)
Effects of LAS on Waitlist
Number of Candidates Awaiting Lung Transplant

Active
Inactive
All

Year
Candidates

0 1000 3000
Waitlist Mortality

Effects on Transplant Rates & Survival
Effect of LAS Implementation on Short-term Survival
US Experience

Early Survival

Ninety-day Mortality and Major Complications Are Not Affected by Use of Lung Allocation Score
Jonathan D. McCarr, MD,*, Josh Mooney, BS,* Jacob Quall, BA,* Amanda Arrington, MD,* Cynthia Herrington, MD,* and Peter S Dahlenberg, MD, PhD*

One-Year Survival

The impact of the lung allocation score on short-term transplantation outcomes: A multicenter study
Benjamin D. Kozower, MD,* Bryan F. Meyers, MD,* Michael A. Smith, MD,* Nitro G. De Oliveira, MD,* Stephen B. Cassel, MD,* Tracey J. Guthrie, RN,* Heekwon Wang, PhD,* Beverly J. Ryan, AGNP,* K. Robert Shen, MD,* Thomas M. Daniel, MD,* and David R Jones, MD*

Lung Allocation Score for Lung Transplantation*
Impact on Disease Severity and Survival
Cynthia J. Gries, MD, MSc; Michael S. Mulligan, MD, FCCP; Jeffrey D. Edelman, MD, FCCP; Ganesh Raghu, MD, FCCP; J. Randall Curtis, MD, MPH, FCCP; and Christopher H. Goss, MD, MSc, FCCP

• No difference in 90 day mortality or PGD
• 2008

• No difference in hospital or 1 year survival
• Higher PGD, ICU LOS
• Decreased waiting list#
• 2008

• No difference in 1 year survival
• No change in lung transplant candidates but significant change in recipient diagnosis
• 2007
Effect of LAS Implementation on Short-term Survival European Experience

Evaluation of Short-Term Outcome after Lung Transplantation in the Lung Allocation Score Era

- No difference in LOS, 90, 180 & 1 year mortality or PGD
- 2015

Introduction of the Lung Allocation Score in Germany

AJT 2014; 14: 1318-1327

- No difference in 90-day mortality
- Decreased waiting list time
LAS and Survival

Impact of U.S. Lung Allocation Score on Survival After Lung Transplantation

No difference in 1 year survival compared to historic cohorts
Significantly increased risk of death (HR 1.46) in quintile 5 (LAS > 46)

Increasing Lung Allocation Scores Predict Worsened Survival Among Lung Transplant Recipients

5331 UNOS Recipients into LAS Quartiles: <46, 47-59, 60-79, >80

OPTN/SRTR 2012 Annual Data Report: Lung
Lung Transplant Recipients Over Time

- **Age:**
 - <12
 - 12-17
 - 18-34
 - 35-64

- **Sex:**
 - Male
 - Female

- **Race:**
 - White
 - Black
 - Hispanic
 - Asian
 - Other/Look

- **PRA:**
 - 0%
 - 1%-19%
 - 20%-79%
 - 80%-85%
 - 85%-90%
 - 90%-95%
 - 95-100%
 - Unknown

- **Diagnosis group:**
 - A
 - B
 - C
 - D
 - Other/Look

Note: Patients receiving a transplant, including multi-organ transplants and pediatric patients. Retransplants are counted.
Concurrent Increase in Regulatory Oversight

- SRTR 1-year and 3-year mortality reports
- Centers for Medicare and Medicaid Services (CMS) “conditions for participation”
 - Proposed in 2005
 - Final rule implemented in 2007

LAS and Long-Term Survival

Impact of the Lung Allocation Score on Survival Beyond 1 Year

AJT 2014; 14: 2288-2294

Table 1: Baseline characteristics by temporal cohort

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total transplants</td>
<td>5081</td>
<td>4628</td>
<td>7437</td>
<td></td>
</tr>
<tr>
<td>Days of follow-up</td>
<td>1429 (337, 3303)</td>
<td>1817 (967, 2593)</td>
<td>714 (345, 1170)</td>
<td></td>
</tr>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recipient age</td>
<td>51.0 (40, 58)</td>
<td>55.0 (44, 60)</td>
<td>57.0 (47, 63)</td>
<td><0.001</td>
</tr>
<tr>
<td>Donor age</td>
<td>29.0 (19, 42)</td>
<td>30.0 (20, 44)</td>
<td>31.0 (21, 46)</td>
<td><0.001</td>
</tr>
<tr>
<td>Gender (male)</td>
<td>2542 (50.0%)</td>
<td>2328 (50.3%)</td>
<td>4337 (58.3%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Time on waitlist (days)</td>
<td>301 (123, 578)</td>
<td>298 (106, 640)</td>
<td>76 (23, 241)</td>
<td><0.001</td>
</tr>
<tr>
<td>Clinical status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical condition</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>ICU</td>
<td>192 (3.8%)</td>
<td>163 (3.5%)</td>
<td>603 (8.2%)</td>
<td></td>
</tr>
<tr>
<td>Hospitalized</td>
<td>300 (6.0%)</td>
<td>207 (4.5%)</td>
<td>576 (7.7%)</td>
<td></td>
</tr>
<tr>
<td>Not hospitalized</td>
<td>4543 (90.2%)</td>
<td>4257 (82.0%)</td>
<td>6258 (84.1%)</td>
<td></td>
</tr>
<tr>
<td>On ventilator</td>
<td>153 (3.0%)</td>
<td>122 (2.6%)</td>
<td>449 (6.0%)</td>
<td><0.001</td>
</tr>
<tr>
<td>On ECMO</td>
<td>8 (0.2%)</td>
<td>28 (0.6%)</td>
<td>79 (1.1%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Candidate diagnosis</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>A</td>
<td>2602 (51%)</td>
<td>2311 (50%)</td>
<td>2341 (33%)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>230 (4.5%)</td>
<td>182 (4%)</td>
<td>223 (3%)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>861 (17%)</td>
<td>674 (15%)</td>
<td>935 (13%)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1183 (22%)</td>
<td>1411 (30%)</td>
<td>3778 (51%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>190 (6%)</td>
<td>50 (11%)</td>
<td>2 (0.03%)</td>
<td></td>
</tr>
<tr>
<td>Ischemic time (min)</td>
<td>265 (193, 323)</td>
<td>271 (207, 340)</td>
<td>398 (238, 363)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

ECMO, extracorporeal membrane oxygenation; ICU, intensive care unit; Diagnosis groups are: A, obstructive lung disease; B, pulmonary vascular disease; C, cystic fibrosis or immuno deficiency disorder and D, restrictive lung disease. Median and interquartile range for continuous variables; counts and percentages for categorical.
¹Kruskal-Wallis and chi-square tests for continuous and categorical variables, respectively.
LAS and Long-Term Survival

LAS effect on the one-year threshold
At what cost?
Impact of the lung allocation score on resource utilization after lung transplantation in the United States

George J. Arnaoutakis, MD, a Jeremiah G. Allen, MD, a Christian A. Marlo, MD, MPH, b Brigitte E. Sullivan, MBA, a William A. Baumgartner, MD, a John V. Conte, MD, a and Ashish S. Shah, MD a

Table 2 Post-operative Outcomes According to LAS Group

<table>
<thead>
<tr>
<th>Variables</th>
<th>Q1-3 (N = 63)</th>
<th>Q4 (N = 21)</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median hospital LOS, days (IQR)</td>
<td>15 (11-22)</td>
<td>35 (23-46)</td>
<td>0.003</td>
</tr>
<tr>
<td>Median ICU LOS, days (IQR)</td>
<td>3 (2-4)</td>
<td>6 (3-15)</td>
<td>0.01</td>
</tr>
<tr>
<td>Re-admissions, n (+SD)</td>
<td>3.4 (+2.9)</td>
<td>3.3 (+2.2)</td>
<td>0.9</td>
</tr>
<tr>
<td>In-hospital-treated rejection, n (+SD)</td>
<td>1 (+1.6)</td>
<td>0 (+0)</td>
<td>0.6</td>
</tr>
<tr>
<td>In-hospital infection, n (%)</td>
<td>38 (60%)</td>
<td>16 (76%)</td>
<td>0.1</td>
</tr>
<tr>
<td>Median time of mechanical ventilation, hours (IQR)</td>
<td>31 (21-41)</td>
<td>43 (29-121)</td>
<td>0.05</td>
</tr>
<tr>
<td>Re-intubation, n (%)</td>
<td>8 (12%)</td>
<td>7 (35%)</td>
<td>0.02</td>
</tr>
<tr>
<td>Tracheostomy, n (%)</td>
<td>9 (14%)</td>
<td>7 (33%)</td>
<td>0.03</td>
</tr>
<tr>
<td>Renal replacement therapy, n (%)</td>
<td>10 (16%)</td>
<td>4 (19%)</td>
<td>0.7</td>
</tr>
<tr>
<td>In-hospital mortality, n (%)</td>
<td>8 (12%)</td>
<td>2 (10%)</td>
<td>0.7</td>
</tr>
</tbody>
</table>

* p-value based on results of either 1-way Student's t-test (continuous variables) or chi-square test (categorical variables).

Figure 3 Breakdown of median charges according to LAS quartile. Rank-sum comparison shows index admission and total 1-year charges were higher for LAS Q6 patients compared with LAS Q1–3 patients (p = 0.004 for index admission and p = 0.008 for total 1-year charges).
Increased Resource Use in Lung Transplant Admissions in the Lung Allocation Score Era

Bryan G. Maxwell¹, Joshua J. Mooney², Peter H. U. Lee³, Joseph E. Levitt², Laveena Chhatwani², Mark R. Nicolls², Martin R. Zamora⁴, Vincent Valentine⁵, David Weill², and Gundeep S. Dhillon²

Table 2. Comparison of Lung Transplant Admissions from Two Temporal Cohorts before and after Data-derived Joinpoint

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr</td>
<td>50.9 ± 0.7</td>
<td>54.4 ± 0.6</td>
<td><0.0001</td>
</tr>
<tr>
<td>Male</td>
<td>3,279 (51.6%)</td>
<td>5,908 (59.5%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td>0.0024</td>
</tr>
<tr>
<td>White</td>
<td>5,423 (85.3%)</td>
<td>8,091 (81.5%)</td>
<td></td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>45 (6.7%)</td>
<td>147 (1.5%)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>447 (7.0%)</td>
<td>722 (7.3%)</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>319 (5.0%)</td>
<td>686 (6.9%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>127 (2.0%)</td>
<td>276 (2.8%)</td>
<td></td>
</tr>
<tr>
<td>Payer</td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>Medicare</td>
<td>1,887 (29.7%)</td>
<td>3,944 (39.8%)</td>
<td></td>
</tr>
<tr>
<td>Medicaid</td>
<td>499 (7.8%)</td>
<td>572 (5.8%)</td>
<td></td>
</tr>
<tr>
<td>Private/HMO</td>
<td>3,669 (57.7%)</td>
<td>4,838 (48.6%)</td>
<td></td>
</tr>
<tr>
<td>Self-pay/other</td>
<td>306 (4.8%)</td>
<td>568 (5.7%)</td>
<td></td>
</tr>
<tr>
<td>Major medical comorbidities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>1,324 (20.8%)</td>
<td>3,174 (32.0%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Diabetes</td>
<td>746 (11.7%)</td>
<td>2,854 (28.8%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Clinical characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical status prior to transplant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not hospitalized</td>
<td>5,797 (81.1%)</td>
<td>8,157 (82.2%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hospitalized</td>
<td>564 (8.9%)</td>
<td>1,765 (17.8%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>On ECMO</td>
<td>39 (0.6%)</td>
<td>103 (1.0%)</td>
<td>0.25</td>
</tr>
<tr>
<td>LAS primary diagnosis group</td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>A (obstructive lung disease)</td>
<td>2,874 (45.2%)</td>
<td>3,051 (30.8%)</td>
<td></td>
</tr>
<tr>
<td>B (pulmonary vascular disease)</td>
<td>277 (4.3%)</td>
<td>281 (2.8%)</td>
<td></td>
</tr>
<tr>
<td>C (CF/immunodeficiency)</td>
<td>933 (14.7%)</td>
<td>1,227 (12.4%)</td>
<td></td>
</tr>
<tr>
<td>D (restrictive lung disease)</td>
<td>1,995 (31.4%)</td>
<td>4,811 (48.5%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>282 (4.4%)</td>
<td>552 (5.6%)</td>
<td></td>
</tr>
</tbody>
</table>

Definition of abbreviations: CF = cystic fibrosis; ECMO = extracorporeal membrane oxygenation; LAS = lung allocation score; HMO = health maintenance organization.
Increased Resource Use in Lung Transplant Admissions in the Lung Allocation Score Era

Bryan G. Maxwell¹*, Joshua J. Mooney²*, Peter H. U. Lee³, Joseph E. Levitt², Laveena Chhatwani², Mark R. Nicolls², Martin R. Zamora⁴, Vincent Valentine⁵, David Welli², and Gundeep S. Dhillon²

Figure 1. Total hospital charges per admission for patients undergoing lung transplant (black) and other solid-organ transplant (gray). Dotted lines denote ±standard error.
Increased Resource Use in Lung Transplant Admissions in the Lung Allocation Score Era

Bryan G. Maxwell1, Joshua J. Mooney2, Peter H. U. Lee3, Joseph E. Levitt2, Laveena Chhatwani2, Mark R. Nicolls2, Martin R. Zamora4, Vincent Valentine5, David Weill2, and Gundeep S. Dhillon2

Figure 2. Percentage of admissions resulting in routine discharge to home, home health, or other facilities. LAS = lung allocation score.
In post-LAS era:
- Length of stay have increased
- Tracheostomy & ECMO rates post-transplant have increased
- Disposition to SNFs & rehab hospitals have increased
Since LAS implementation...

- Decreased number of wait list patients and waiting list time per patient
- Decreased waiting list mortality, initially, now increasing
- Recipient Characteristics Shift
 - Older patients
 - Sicker Patients
 - Group D / ILD recipient favored
- High LAS scores associated with increased post-transplant mortality
- But, No change in overall survival at 1 year
But ...

- Long-term survival appears to have worsened
- Increased resource utilization
- Indirect evidence of increased morbidity
Is there a pullback?
Candidates waiting for lung transplant by LAS

![Graph showing candidates waiting for lung transplant by LAS over years from 2004 to 2016 with different age groups represented by various symbols and lines. The graph indicates a decrease in the percentage of candidates waiting for lung transplant over the years, with a notable decline in the 40-50 age group.](image-url)
Total Lung Transplants by LAS

Year

Transplants
0 200 400 600

< 35
35-< 40
40-< 50
50-< 60
60-100

American Journal of Transplantation
pages 363-433, 2 JAN 2018 DOI: 10.1111/ajt.14562
Since 2014

- The percentage of candidates with LAS > 50 is decreasing
- The waitlist mortality for patients with LAS > 50 is rising
- The total number of transplants for LAS > 50 is decreasing
Survival Benefit of Lung Transplantation in the Modern Era of Lung Allocation

David M. Vock1, Michael T. Durheim2,3, Wayne M. Tsang4, C. Ashley Finlen Copeland3, Anastasios A. Tsiatis5, Marie Davidian5, Megan L. Neely2,6, David J. Lederer7, and Scott M. Palmer2,3

Survival Benefit of Lung Transplantation in the Modern Era of Lung Allocation

David M. Vock¹, Michael T. Durheim²,³, Wayne M. Tsuang⁴, C. Ashley Finlen Copeland⁵, Anastasios A. Tsiatis⁶, Marie Davidian⁵, Megan L. Neely²,⁶, David J. Lederer⁷, and Scott M. Palmer²,³
Summary

- Implementation of LAS shifted the organs towards older & sicker patients
- Concurrent increase in regulatory pressures, probably led to:
 - Increased focus on 1-year survival
 - Worsening long term outcomes
 - Increased resource utilization to maintain 1-year outcomes
- Risk aversion leading to decreased number of transplants in the higher LAS groups
Thank You