Beyond the LAS: Looking at Combined Endpoints to Evaluate Urgency for Lung Transplantation

Erika D. Lease, MD, FCCP
University of Washington
Disclosures

None
Learning Objectives

• Review the current state of the Lung Allocation Score (LAS) in the United States
• Discuss the framework of a continuous distribution system
• Identify the possible components of a future composite allocation score
Timeline of Organ Allocation in the US

1954 – 1st successful kidney transplant

1968 Uniform Anatomical Gift Act

Organ allocation as a local process

1984 US Congress passes NOTA, creates OPTN

1986 UNOS receives contract

2000 DHHS implements Final Rule

2005 Implementation of the LAS

2015 Major revisions of the LAS

2017 Immediate removal of DSA as the first unit of allocation
Timeline of Organ Allocation in the US

- 1954 – 1st successful kidney transplant
- 1968 Uniform Anatomical Gift Act
- 1984 US Congress passes NOTA, creates OPTN
- 1986 UNOS receives contract
- Organ allocation becomes a national process
- 2000 DHHS implements Final Rule
- 2005 Implementation of the LAS
- 2015 Major revisions of the LAS
- 2017 Immediate removal of DSA as the first unit of allocation
Timeline of Organ Allocation in the US

1954 – 1st successful kidney transplant

1968 Uniform Anatomical Gift Act

1984 US Congress passes NOTA, creates OPTN

1986 UNOS receives contract

2000 DHHS implements Final Rule

2005 Implementation of the LAS

2015 Major revisions of the LAS

2017 Immediate removal of DSA as the first unit of allocation

Regulatory framework for organ allocation and transplantation
The Final Rule was implemented to develop organ allocation policies with an emphasis on limiting the impact of geography and waiting time, and prioritizing medical urgency:

- (1) Shall be based on sound medical judgment;
- (2) Shall seek to achieve the best use of donated organs;
- (3) Shall preserve the ability of a transplant program to decline an offer of an organ or not to use the organ for the potential recipient;
- (4) Shall be specific for each organ type or combination of organ types to be transplanted into a transplant candidate;
- (5) Shall be designed to avoid wasting organs, to avoid futile transplants, to promote patient access to transplantation, and to promote the efficient management of organ placement;
- (6) Shall be reviewed periodically and revised as appropriate;
- (7) Shall include appropriate procedures to promote and review compliance including, to the extent appropriate, prospective and retrospective reviews of each transplant program's application of the policies to patients listed or proposed to be listed at the program; and
- (8) Shall not be based on the candidate's place of residence or place of listing.
Timeline of Organ Allocation in the US

1954 – 1st successful kidney transplant

1968 Uniform Anatomical Gift Act

1984 US Congress passes NOTA, creates OPTN

1986 UNOS receives contract

2000 DHHS implements “Final Rule”

2005 Implementation of the LAS

Changes in allocation of lungs

2015 Major revisions of the LAS

2017 Immediate removal of DSA as the first unit of allocation
History of Lung Allocation in the US

- In 1998, in response to the Final Rule, a committee was formed to review lung allocation with the emphasis on prioritizing by medical urgency.
- May 4th, 2005 – implementation of lung allocation via the Lung Allocation Score “LAS”

10.1.F The LAS Calculation

The LAS calculation uses all of the following measures:

- Waiting List Urgency Measure, which is the expected number of days a candidate will live without a transplant during an additional year on the waiting list.
- Post-transplant Survival Measure, which is the expected number of days a candidate will live during the first year post-transplant.
- Transplant Benefit Measure, which is the difference between the Post-transplant Survival Measure and the Waiting List Urgency Measure.
- Raw Allocation Score, which is the difference between Transplant Benefit Measure and Waiting List Urgency Measure.

To determine a candidate’s LAS, the Raw Allocation Score is normalized to a continuous scale of zero to 100.

The equation for the LAS calculation is:

\[
\text{LAS} = \frac{100 \times [\text{PTAUC} - 2 \times \text{WLAUC} + 730]}{1095}
\]
Lung Allocation in the US: Impact of LAS

- Transplant Rates
- Donation Rates
- Waiting List Deaths
- Transplant by Diagnosis

Egan et al. JHLT 2016:35;433-9
Lung Allocation in the US: Impact of LAS

Egan et al. JHLT 2016;35;433-9
Lung Allocation in the US: Removal of DSA

- In November 2017, a lawsuit was filed by a patient against the OPTN/DHHS arguing geographic boundaries were arbitrary
- UNOS agreed that allocation by DSA was inconsistent with the Final Rule, thus proposed an initial unit of allocation as 250nm
- Allocation change went into effect on Saturday, November 24th, 2017
Future of Lung Allocation in the US

• An ad-hoc Geography Committee was formed to determine potential geographic frameworks for all organ allocation
Future of Lung Allocation in the US

Medical priority + Geographic feasibility = Allocation priority

Organ distribution without geographic boundaries: A possible framework for organ allocation

Jon J. Snyder1,2 | Nicholas Salkowski1 | Andrew Wey1 | Joshua Pyke3 |
Ajay K. Israni1,2,3,4 | Bertram L. Kasiske1,2,3,4
Continuous Distribution of Lungs

The current system has hard boundaries that create inequities. Examples:

• ABO compatibility
• Age groups
• Geography

Concept is to change from a **classification-based system** to a **points-based system**.
Continuous Distribution of Lungs

<table>
<thead>
<tr>
<th>LAS Scenario</th>
<th>Candidate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
<td>C</td>
</tr>
<tr>
<td>Medical Priority</td>
<td>🚑 LAS 38.03</td>
</tr>
<tr>
<td>Ischemic Time</td>
<td>⏰ 2-hours</td>
</tr>
</tbody>
</table>
Continuous Distribution of Lungs

<table>
<thead>
<tr>
<th>Blood type Scenario</th>
<th>Candidate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
<td>D</td>
</tr>
<tr>
<td>Medical Priority</td>
<td>📈 LAS 90</td>
</tr>
<tr>
<td>Blood Type</td>
<td>✓ Compatible</td>
</tr>
<tr>
<td>Ischemic Time</td>
<td>🕒 2-hours</td>
</tr>
<tr>
<td>Attribute</td>
<td>A</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Medical Priority</td>
<td>LAS 38.01</td>
</tr>
<tr>
<td>Placement Efficiency</td>
<td>High efficiency</td>
</tr>
<tr>
<td>Ischemic Time</td>
<td>30 minutes</td>
</tr>
<tr>
<td>Blood Type</td>
<td>✅ Compatible</td>
</tr>
<tr>
<td>Waiting Time</td>
<td>5-years</td>
</tr>
<tr>
<td>Highly Sensitized</td>
<td>No</td>
</tr>
<tr>
<td>Candidate Age Group</td>
<td>Pediatric</td>
</tr>
</tbody>
</table>
Continuous Distribution of Lungs
Hypothetical Match Run – Points-Based System

Example

- Medical Priority
- Ischemic Time
- Candidate Age Group
- Blood Type Compatibility
- Placement Efficiency
- Sensitization
- Waiting Time
Allocation of Deceased Donor Lungs

<table>
<thead>
<tr>
<th>Goal</th>
<th>Utility</th>
<th>Equity</th>
<th>System Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Urgency</td>
<td>Medical Urgency</td>
<td>Reducing Biological Disadvantages in Transplant Access</td>
<td>Placement Efficiency</td>
</tr>
<tr>
<td>Post Transplant Survival</td>
<td>Post Transplant Survival</td>
<td>Patient Access</td>
<td></td>
</tr>
<tr>
<td>Ischemic time</td>
<td>Ischemic time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Year survival post transplant (part of LAS)</td>
<td>1-Year survival post transplant (part of LAS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pediatric Priorities</td>
<td>Pediatric Priorities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood Type</td>
<td>Blood Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly Sensitized</td>
<td>Highly Sensitized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidate Size</td>
<td>Candidate Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior Living Donors</td>
<td>Prior Living Donors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidate Age</td>
<td>Candidate Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel Efficiency</td>
<td>Travel Efficiency</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Continuous Distribution of Lungs

Weighing Attributes

- **Clinically Weighted:**
 - Medical Urgency: LAS, Pediatric Priority
 - Post Transplant Survival: Ischemic Time, LAS, Pediatric Priority
 - Reducing Biological Disadvantages: ABO, Sensitization, Height

- **Values Laden:**
 - Medical Urgency
 - Post Transplant Survival
 - Reducing Biological Disadvantages
 - Prior Living Donors
 - Candidate Age
 - Placement Efficiency
Continuous Distribution of Lungs

Hypothetical Lung Distribution

<table>
<thead>
<tr>
<th>Distance</th>
<th>LAS</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.35</td>
<td>65%</td>
</tr>
<tr>
<td>10</td>
<td>0.36</td>
<td>65%</td>
</tr>
<tr>
<td>20</td>
<td>0.38</td>
<td>65%</td>
</tr>
<tr>
<td>30</td>
<td>0.41</td>
<td>65%</td>
</tr>
<tr>
<td>40</td>
<td>0.45</td>
<td>65%</td>
</tr>
<tr>
<td>50</td>
<td>0.51</td>
<td>65%</td>
</tr>
<tr>
<td>60</td>
<td>0.58</td>
<td>65%</td>
</tr>
<tr>
<td>70</td>
<td>0.67</td>
<td>65%</td>
</tr>
<tr>
<td>80</td>
<td>0.77</td>
<td>65%</td>
</tr>
<tr>
<td>90</td>
<td>0.88</td>
<td>65%</td>
</tr>
<tr>
<td>100</td>
<td>1.00</td>
<td>65%</td>
</tr>
</tbody>
</table>

Attribute Weighting

- **LAS**: 65%
- **Distance**: 35%
- **Total**: 100%

Distance Score

![Distance Score Graph]

LAS Score

![LAS Score Graph]
Continuous Distribution of Lungs

The Path Forward

Identify attributes → Categorize attributes → Prioritize attributes against each other → Convert attributes into points → Build framework → SRTR modeling → Public comment on policy proposal → Board
Continuous Distribution of Lungs

The Path Forward

• Most importantly, the goal is to create an allocation system that:
 – Fulfills the requirements of the Final Rule
 – Reflects the values and priorities of the community
 – Is flexible for changes in the future
Conclusions

• Currently there are “hard boundaries” in multiple aspects of lung allocation that create inequities in access

• A continuous distribution framework attempts to smooth these hard boundaries while still maintaining efficiency in the lung allocation system

• A composite allocation score allows the system to consider multiple factors in lung allocation and is flexible for changes in the future
Thank you!