




Kiran K. Khush, MD, MAS
Associate Professor of Cardiovascular Medicine
Stanford University



#### **TRANSPLANT SUMMIT 2019**

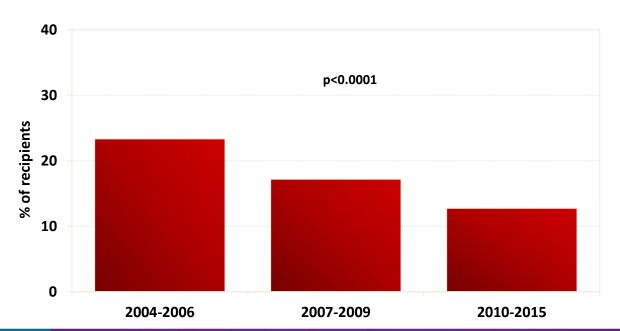
**NO SIZE FITS ALL:** Uncovering the Potential of Personalized Transplantation

### **Disclosure**

**CareDx, Inc**: scientific advisor, speakers' bureau, research grant recipient, steering committee



### **Learning Objectives**


- To appreciate the need for non-invasive biomarkers for surveillance of graft health
- To understand the principles of cell-free DNA testing
- To review major studies to-date of donor-derived cell free DNA testing for acute rejection monitoring after heart transplantation
  - Stanford shotgun sequencing (GTD- Genome Transplant Dynamics)
  - Targeted sequencing
    - 。 AlloSure®
    - 。 myTAI<sub>HEART</sub>
  - One genome method





### Need for acute rejection surveillance

Adult Heart Transplants
% of Recipients Experiencing <u>Treated</u> Rejection Between Transplant Discharge
and 1-Year Follow-Up by Era



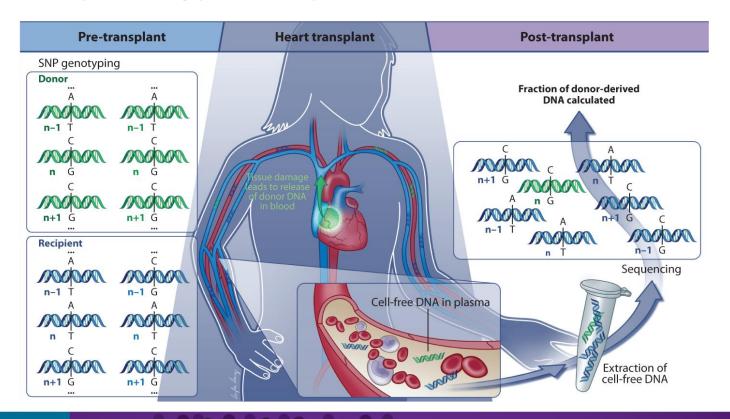
Treated rejection = Recipient was reported to (1) have at least one acute rejection episode that was treated with an anti-rejection agent; or (2) have been hospitalized for rejection.



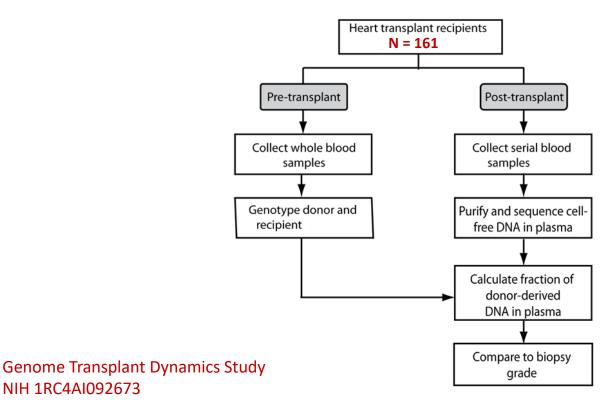


### **Non-Invasive Markers of Rejection**

- Electrocardiogram
  - Surface
  - Intramyocardial
- Cardiac Imaging
  - Echocardiography
  - Magnetic Resonance Imaging
  - Nuclear Imaging

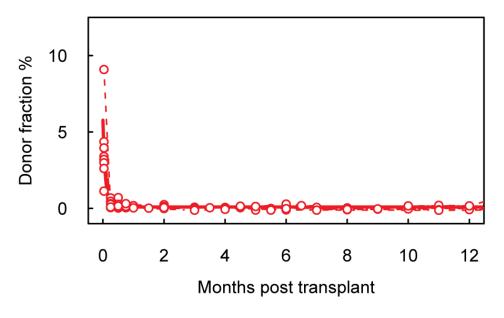

### Biomarkers

- B-type Natriuretic Peptide (BNP)
- Troponin (Tnl, TnT)
- High-sensitivity CRP


- Genomic Markers
  - Gene Expression Profiling
  - Cell-free DNA
  - mRNA/miRNA
  - Proteomics



### **Cell-Free DNA: a promising post-transplant biomarker**

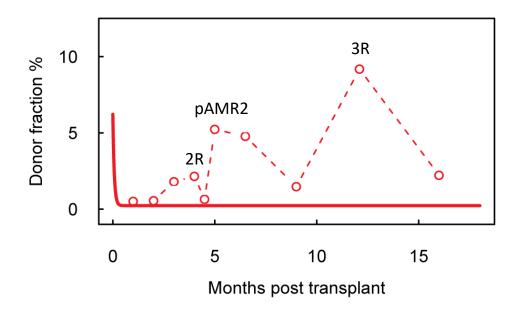



### cfDNA prospective study design



NIH 1RC4AI092673

### dd-cfDNA signal in absence of rejection

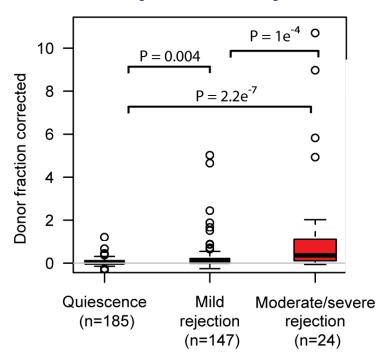



Elevated signal immediately post transplant followed by a quick decay (2.4 days) to a low baseline level





### dd-cfDNA signal at time of acute rejection

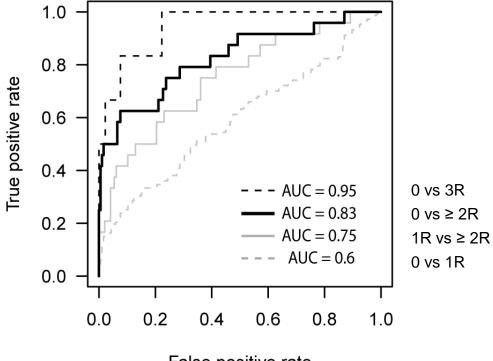



**Elevated donor DNA at time of rejection** 





### Comparison of dd-cfDNA levels: no rejection vs rejection




Significant increase in fraction of donor-derived DNA at rejection





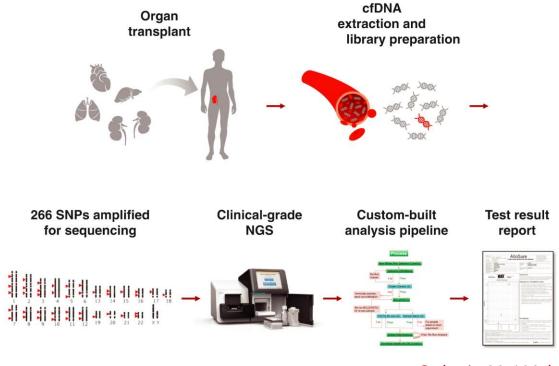
### **Test performance: Detection of acute rejection**



False positive rate



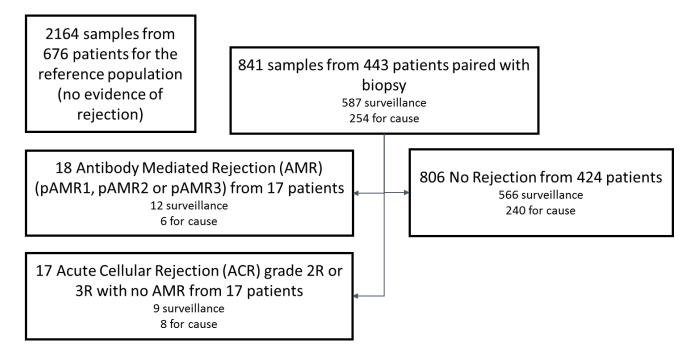



### dd-cfDNA: A Rapidly Evolving Technology

- Technology used in previous studies to measure SNP alleles:
  - Shotgun sequencing methods (Stanford) (1)
  - Targeted amplification (Wisconsin) (2)
  - Both requiring recipient AND donor genotypes
- New approaches (AlloSure, myTAI<sub>HEART</sub>, one genome method)
   have been developed to discriminate donor from recipient after
   sequencing cfDNA from a recipient blood sample only (3, 4)
  - (1) Snyder et al., PNAS, 2011 De Vlaminck et al., Sci Transl Med, 2014
    - (2) Beck et al., Clin Chem, 2013 Hidestrand et al., JACC, 2014
  - (3) Sharon E et al. PLoS Comput Biol, 2017
  - (4) Grskovic et al, J Mol Diagnostics, 2016



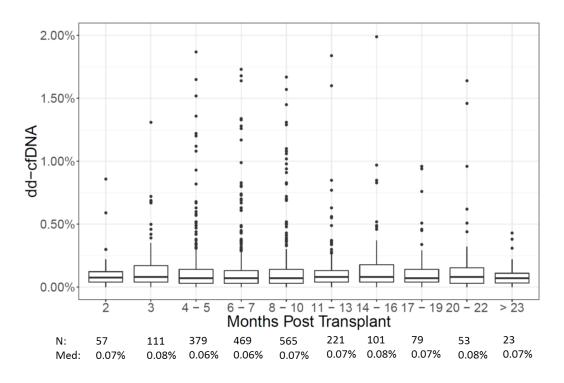



### AlloSure® dd-cfDNA assay



Grskovic, M. J Molecular Diagnostics, 2016

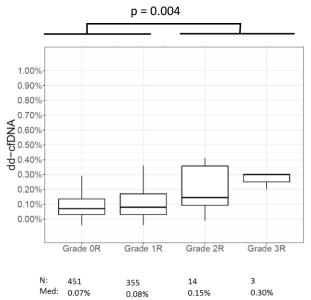


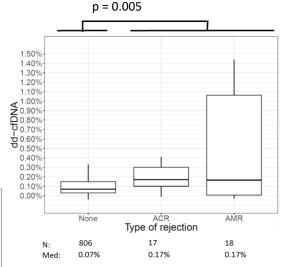

### **Prospective AlloSure® study in heart transplantation: D-OAR Registry**

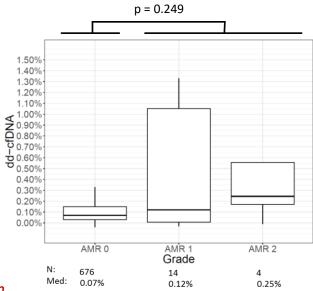






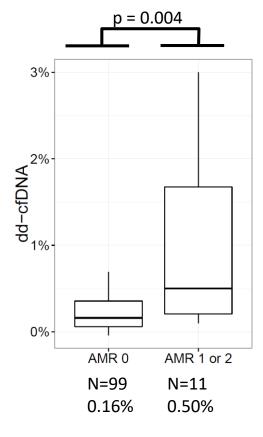

### D-OAR Study: dd-cfDNA levels post-transplant (no rejection)






### **D-OAR Study Results**

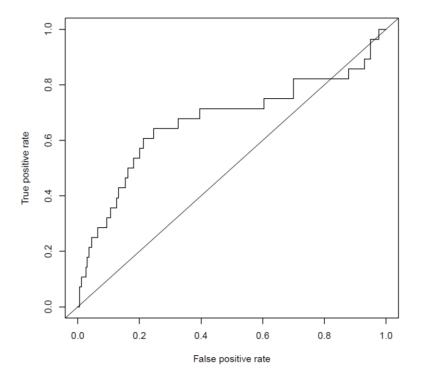









# **D-OAR Study Results:** Cedars Sinai cohort




33 patients, 110 samples





### **AlloSure test performance**



### Threshold 0.2%

AUC 0.64

Sensitivity 44%

Specificity 80%

PPV 9%

**NPV 97%** 





# Now Offering... my TA

- First non-invasive, cell-free DNA based test for increased risk of moderate or higher acute cellular rejection in heart transplant patients
- Rapid, cost-effective, clinically validated laboratory developed test
- Can be used in patients as young as 2 months of age and as early as
   7 days post-transplant
- Results available next business day after receipt
- CLIA Certified / CAP Accredited



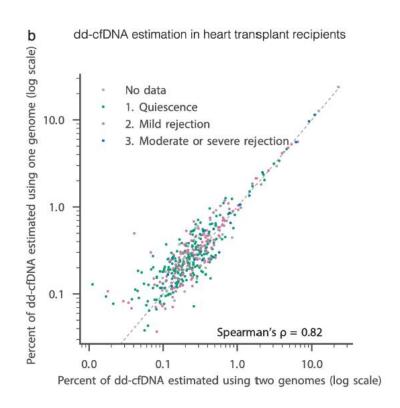
## **myTAI**<sub>HEART</sub>

- Targeted sequencing "relies on selected highly-informative genomic regions" [Digital Analysis of Selected Regions (DANSR)]
- Method 1: donor and recipient genotyped
- Method 2: recipient genotyping only
- 88 pediatric heart transplant patients, mean age 13 years (0.1-30 years)
- 158 blood samples paired with biopsy

Hidestrand M, et al. JACC, 2014 Ragalie W, et al. JACC, 2018






# $\mathbf{myTAI}_{\mathsf{HEART}}$

| Biopsy Grade | N   | % dd-cfDNA (threshold 0.2%) |          |
|--------------|-----|-----------------------------|----------|
|              |     | Method 1                    | Method 2 |
| OR           | 134 | 0.11%                       | 0.25%    |
| 1R           | 21  | 0.37%                       | 0.89%    |
| 2R           | 3   | 0.97%                       | 1.22%    |
| 3R           | 0   | -                           | -        |

| Method | Comparison  | P-value | AUC  |
|--------|-------------|---------|------|
| 1      | OR vs 1R/2R | 0.02    | 0.78 |
| 2      | OR vs 1R/2R | <0.001  | 0.84 |

### "One genome" method

- Shotgun sequencing of total cfDNA
- Computational approach to estimate dd-cfDNA levels in the absence of a donor genotype



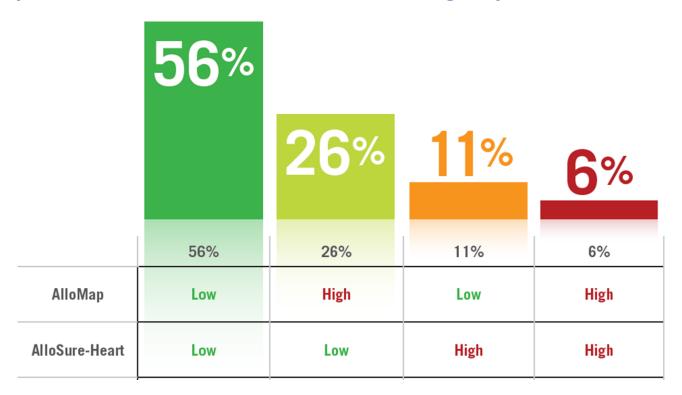
Sharon E, et al. PLOS Computational Biology, 2017





### **SHORE Study: Surveillance HeartCare Outcomes Registry**

HeartCare = AlloMap + AlloSure




### Hypothesis:

- AlloMap (gene expression test) detects immune activation and is clinically validated for ACR monitoring
- AlloSure (cfDNA assay) detects graft injury and is validated for ACR and AMR monitoring
- Perhaps a COMBINED AlloMap + AlloSure monitoring approach will be better than either test alone



### **SHORE Study: Surveillance HeartCare Outcomes Registry**



### **SHORE study design**

- 5 year study
- 35 sites in US
- 1,600 patients
- **Primary objective**: To assess the clinical utility of surveillance using HeartCare testing, in association with the clinical care of heart transplant recipients
- **Endpoints**: deaths, number of biopsies, number of rejection events, measures of graft function



# Heart Allograft Routine Testing Schedule (HARTS)

A blood test can be administered more frequently and conveniently than an invasive procedure, providing for more continuous rejection surveillance.











(Months Post-Transplant)

Courtesy of CareDx, Inc.





### Conclusions: dd-cfDNA for heart transplant monitoring

- We have come a long way in the quest for non-invasive ways to assess graft health after transplant
- Fewer biopsies are being performed than ever before
- Fewer procedural complications, more satisfied patients
- AlloSure has been tested in prospective registry study (D-OAR)
  - Detects both ACR and AMR at a threshold of 0.2%
- Upcoming SHORE study (CareDx): Combined AlloMap + AlloSure for heart transplant monitoring
- MyTAI<sub>HEART</sub> is available for use (pediatric patients)
- "One genome method" is being studied for clinical use





## **THANK YOU**



