

Measuring

Immunoresponsiveness:

What tools do we have in our

arsenal?

Shelley Hall, MD, FACC, FAST, FHFSA Chief, Transplant Cardioloy Baylor University Medical Center, Dallas

CUTTING EDGE of TRANSPLANTATION

TRANSPLANT SUMMIT 2019

NO SIZE FITS ALL: Uncovering the Potential of Personalized Transplantation

Disclosures

No disclosures related to this discussion

Objectives

- 1. Review concept of measuring immunoresponsiveness
- Discuss available tools that are or could be used for measuring immunoresponsiveness
- 3. Discuss potential future tools that could be used for measuring immunoresponsiveness

Immunoresponsiveness

- Ability to respond to foreign antigen
 - Must be aware of Ag presence (T cell mediated)
 - Direct pathway T cells recognize intact allo-MHC molecules
 - Indirect pathway T cells recognize processed alloantigens
 - Must be able to produce response

Patient Care Post-Transplant is Challenging

Patients are on life-long immunosuppressive drug therapy

Immunosuppression

Transplant Recipients are high value patients in the Health Care System Median survival: Heart: 12 years; Kidney: 10 years

What We Have

ImmuKnow

- Quantification of cell-mediated immunity
- Measures adenosine triphosphatase (ATP) release from activated lymphocytes
- Overall level of immune responsiveness

The Benefit of Immune Monitoring (IM): A Review of 864 Immune Monitoring Assays in Heart Transplantation

- Between December 2000-July 2008, 864
 IM assays from 296 patients were
 correlated to infection (requiring
 antimicrobial therapy) and treated
 rejection events within 1 month <u>after</u> IM
 testing.
- Of the 864 IM assays scores there were:
 - 38 subsequent episodes of infection
 - 8 subsequent episodes of treated rejection
- These were compared to 818 IM assays from stable patients without infection or rejection
- All patients were on tacrolimus, mycophenolate mofetil and +/corticosteroids without induction therapy

- The average IM score was significantly lower in patients with infection vs. steady state patients:
 - 187 <u>+</u> 126 vs. 280 <u>+</u> 126, p<0.001
- The mean IM score was numerically higher in patients who developed rejection vs. steady state patients:

 3/8 rejection episodes had hemodynamic compromise and for these, the mean IM score was higher

Kobashigawa, J Heart Lung Transplant. 2010 May;29(5):504-8.

Adult Heart Transplant Experience with Immune Monitoring

IM Study Conclusions

- The non-invasive IM test appears to predict infection in heart transplant patients
- The association between high IM scores and rejection is inconclusive due to the small number of rejection episodes

Kobashigawa, J Heart Lung Transplant. 2010 May;29(5):504-8.

The search for the perfect biomarker

IDEAL

Noninvasive or minimally invasive

High sensitivity and specificity

Quick turnaround time

Cost-effective

Reproducible

LIMITATIONS

Labor and complexity

Lack of standardization

Lack of cross-validation

Time and cost-consuming

Difficult to automate

BNP and immune monitoring in heart transplant

- 66 patients beyond 1st year post HTx were divided into: low (<250pg/ml) and high (≥250pg/ml) groups ¹
 - High BNP was an independent predictor of poor survival and was associated with allograft dysfunction and CAV
 - Lower BNP associated with 95% survival rate
- 146 primary Htx recipients retrospectively assessed with serial analysis of NT-pro BNP alongside biopsy schedule²
 - For a 2-fold increase in NT-proBNP, OR=2.9 for significant (≥2R)
 rejection
 - If 5-fold increase in NT-proBNP=9.1
 - A within-individual increase in NT-proBNP demonstrated a strong graded relationship with the odds of significant rejection independent of hemodynamic parameters.
 - 1 Mehra et al., Am J Cardiol 2004;94:454–458
 - 2 Kittleson et al., JHLT 2009;28:704-9

CRP and immune monitoring in heart transplant

- 210 patients assessed individual and combined value of NTpro BNP and CRP assessed as markers of acute rejection, CAV and mortality.
 - Individually, increased NT-proBNP and CRP did not predict CAV
 - Combined elevation of the two identified patients at higher risk for CAV (HR 2.10) and mortality (HR 3.14)

Arora et al., Transplantation 2007

Troponins and immune monitoring

- 35 patients (422 samples) more than 3 months post-HTx assessed for troponin T serum concentrations compared to histological grade of acute cellular rejection ¹
 - Troponin T noted to increase in parallel with severity of graft rejection.
 - High negative predictive value for significant rejection (ISHLT grade 3/4) of 96.2% with cut-off of 15ng/L.
- Use of a novel high sensitivity Troponin I assay was retrospectively assessed in 98
 post-transplant patients matched to endomyocardial biopsies²
 - cTnI concentrations were significantly higher in rejection (≥2R) samples versus non-rejection samples.
 - cTnI also increased in a graded manner with higher biopsy severity grades.
 - Cut-off point of 15ng/L- Sensitivity 94%, specificity 60%, negative predictive value 99%

1 Dengler et al., J Am Coll Cardiol 1998;32:405-12

2 Patel et al. Circ Heart Fail, 2014;7:463-469

Troponins and immune monitoring

- Troponin T measured in 90 recipients concurrent to endomyocardial biopsy who were 0-5 years post-transplant ¹
 - Only 1 of the 12 ISHLT grade 3 rejection specimens had corresponding elevated cTnT
 - Only 3 of the 29 ISHLT grade 2/3 specimens had elevated cTNT
 - Overall, very poor sensitivity shown by cTNT for ISHLT grade 2 or 3 rejection
- Prospective analysis comparing troponin I and T levels to biopsy results in 29 HTx recipients ²
 - Only 2 rejection episodes (defined as ≥ISHLT grade 3), with no significant relationship between cTnT/cTnI and rejection.
 - Overall, troponins were not useful indicators of cardiac rejection

Alexis et al., JHLT 1998;17(4):395-8 Mullen et al., Eur J Cardiothorac Surg 2002;22;233-7

What We Could Have in Future

Biomarkers

- Pharmacokinetic i
- Pharmacodynami kinase
- Pharmacogenetics 2,-3,-5
- Markers of viral ir
- Immune markers
 - Soluble cytok
 - T-cell activation
 - T-cell proliferat
 - Intracellular ma in CD4+ cells

ctivity, p7056

TLR-4, TLR-9, TLR-

ession, ATP levels

Barcelona Consensus Conference

- 19 experts in field of therapeutic drug monitoring of IS drugs and biomarkers in tx
- Reviewed all articles since 2000.
- Three types of biomarkers
 - Those associated with risk of rejection (alloreactivity/tolerance)
 - Those reflecting individual response to IS
 - Those associated with graft dysfunction and injury

Biomarkers Associated with Risk of Rejection

- T-Cell IFN-gamma
- IL-2
- T-Cell Surface Antigens no trials yet
- T-Cell Regulatory Populations no trials yet

T cell IFN-gamma

Literature:

- Pleiotropic effect; can elicit inflammatory T-helper 1driven immune responses or enable T-regulatory to control immune responses
- It is the cell subpopulation that determines whether immune response will be effector or regulatory
- Evaluated via ELISPOT assay

Summary recs:

- Monitoring intracellular or total IFN-gamma before and early after tx can help id high risk of acute rejection in kidney and liver tx
- Monitoring production with donor-specific stim can help id pts who could get IS minimized
- Ongoing trials

IL-2

Literature:

- Drives T-cell growth, induces T-reg differentiation, mediates activation-induced cell death
- CD3, CD8 and CD69 cells most predictive
- Evaluated via ELISPOT assay

Summary recs:

- Monitoring intracellular IL-2 before and early after tx can help id high risk of acute rejection in kidney and liver tx
- IL-2 inhibition may reflect interindividual response to CNIs
- Ongoing trials

Biomarkers Associated with Risk of Rejection

- <u>Limitations of ELISPOT</u>
 - Donor-specific cells not usually available
 - Impossible to simultaneously analyze different lymphocyte subsets and or effector/regulatory cytokines

Biomarkers that Reflect Pt response to IS

- Target Enzyme Activity
- Nuclear Factor of Activated T-Cell-Regulated Gene Expression
- Pharmacogenetic Markers

Target Enzyme Activity

IMPDH

- Inosine-monophosphatedehydrogenase (IMPDH) is inhibited by MPA
- Determination of IMPDH activity before tx might help id renal tx pts a higher risk of rejection or MPA-associated side effects
- Monitoring IMPDH activity may complement MPA drug levels to better guide MPA therapy
- Ongoing trials

- P-p70S6 kinase/pS6RP
 - Suppressed by mTORs
 - Assays sensitive to other IS drugs
 - Not ready for prime time

Nuclear Factor of Activated T-Cell-Regulated Gene Expression

- Real-time polymerase chain reaction technique allows rapid, highly reproducible tool
- Test semiautomated, standardized
- Low variability in individual pt

- Residual NFAT-regulated gene expression helps id renal tx pts at risk infections, malignancy, rejection, CV risk
- Monitoring residual NFATreg gene expression complements CNI trough levels
- Trials ongoing

Pharmacogenetic Markers

- Based on id of constitutive genetic markers located in genes influencing drug responses
- CsA CYP3A4*22, donor ABCB1
- Tac CYP3A5
- MPA UGT1A9, IMPDH1
- mTORi no validated PG biomarkers

- CYP3A5 genotype-based adjustment of Tac helpful
- No beneficial clinical outcomes trials yet

CPIC Guidelines: CYP3A5 genotyping and tacrolimus

Table 2 Dosing recommendations for tacrolimus based on CYP3A5 phenotype

CYP3A5 phenotype ^a	Implications for tacrolimus pharmacologic measures	Therapeutic recommendations ^b	Classification of recommendations
Extensive metabolizer (CYP3A5 expresser)	Lower dose-adjusted trough concen- trations of tacrolimus and decreased chance of achieving larget lacrolimus concentrations.	Increase starting dose 1.5–2 times recommended starting dose. ^d Total starting dose should not exceed 0.3 mg/kg/day. Use therapeutic drug monitoring to guide dose adjustments.	Strong
Intermediate metabolizer (CYP3A5 expresser)	Lower dose-adjusted trough concen- trations of tacrolimus and decreased chance of achieving target tacrolimus concentrations.	Increase starting dose 1.5–2 times recommended starting dose. ^a Total starting dose should not exceed 0.3 mg/kg/day. Use therapeutic drug monitoring to guide dose adjustments.	Strong
Poor metabolizer (CYP3A5 nonexpresser)	Higher ("normal") dose-adjusted trough concentrations of tacrolimus and increased chance of achieving target tacrolimus concentrations.	Initiate therapy with standard recom- mended dose. Use therapeutic drug monitoring to guide dose adjustments.	Strong

^aTypically, with other CYP enzymes, an extensive metabolizer would be classified as a "normal" metabolizer, and, therefore, the drug dose would not change based on the patient's genotype. However, in the case of CYP3A5 and tacrolimus, a CYP3A5 expresser (i.e., CYP3A5 extensive metabolizer or intermediate metabolizer) would require a higher recommended starting dose and the CYP3A5 nonexpresser (i.e., poor metabolizer) would require the standard recommended starting dose. ^bThis recommendation includes the use of tacrolimus in kidney, heart, lung, and hematopoietic stem cell transplant patients, and liver transplant patients in which the donor and recipient genotypes are identical. ^cRating scheme is described in **Supplementary Data** online. ^dFurther dose adjustments or selection of alternative therapy may be necessary because of other clinical factors (e.g., medication interactions, or hepatic function).

Biomarkers Associated with Graft Dysfunction or Injury

- Chemokines
 - Small molecular wt proteins secreted by many cells
 - Direct leukocyte navigation, associated with inflammatory and immune responses
 - CXCR-3, CXCL-9, CXCL-10 are abundant in rejection grafts
- Donor derived cell free DNA

Could a Virus be the Solution?

Relative genomic abundance

The anelloviridae fraction is primarily composed of viruses from the alphatorque genus.

De Vlaminck, Cell, 2013

Torque Teno Virus Load

- Quantified via sequencing cell-free viral DNA from recipient blood
- Most abundant member of the Anelloviridae
- Nearly ubiquitous in humans, asymptomatic infection in childhood
- Increase dramatically during first 6 months after tx then decline with weaning of IS meds

Virome temporal dynamics

De Vlaminck, Cell, 2013

Virome temporal dynamics

Immunosuppressants and antivirals alter structure of the virome

47 patients, 380 samples

De Vlaminck, Cell, 2013

Anellovirus load for rejecting vs non-rejecting recipients

Can anellovirus load be used as a marker of a patient's net state of immunosuppression?

De Vlaminck, Cell, 2013

Conclusions

- Need wide variety of components to test for
- Most too complex for clinical setting
- Should be noninvasive, rapid turn around time, accurate, precise, cost effective, standardizable
- Most studies are single center
- Very few commercial kits

