

Gene expression Profiling- Rationale

Current techniques for monitoring the lung allograft

Clinical symptoms/ Spirometry

Radiographic findings

Bronchoscopy with BAL/ transbronchial biopsies

Current diagnostic tests

Low sensitivity

Low specificity

Do not address mechanism/ endotypes

Diagnosis of Acute Cellular Rejection

Bronchoscopy with Biopsies:

- Invasive
- Variability in sampling
- Inter-observer variability in reading the biopsies
- Not predictive

FEV1 decline in CLAD/ BOS

Inter-observer variability

- Clinical gestalt
- Personal experience
- Definition is difficult to operationalize

Gene Expression Profiling

- Promising Tool to identify transcriptomic markers associated with allograft function
- Gene signatures and "molecular microscope"
- Successfully used in heart, kidney and liver transplant recipients as predictors of rejection
- Interest in lung transplantation to develop a gene signature for predicting rejection
- Sampling in lung transplant recipients may occur from
 - Peripheral blood
 - Bronchoalveolar lavage
 - Transbronchial biopsies

Blood Gene Expression Predicts BOS

- 107 peripheral blood samples from 89 lung transplant recipients in the COLT study
- 49 patients with stable lung function
- 40 patients with BOS at 3 years post transplant
 - Samples 6 months prior to BOS (PRED)
 - Samples at BOS onset (DIAG)
- 50 gene transcripts were differentially expressed between the two groups

Blood Gene Expression Predicts BOS

Blood Gene Expression Predicts BOS

Gene Expression preceding CLAD

- Hypothesized the BAL cell pellet may provide a larger "window" as it may contain several compartments of the lung allograft
- 9 patients with CLAD/ BOS (3yrs)
- 8 stable patients up to 4 years
- BAL cell pellets at one year surveillance bronchoscopy
 - 55 dysregulated genes
 - 51 upregulated genes
 - 4 downregulated genes

Gene expression preceding CLAD

- 55 differentially expressed genes
 - Retention, activation and proliferation of cytotoxic lymphocytes
 - Innate and adaptive cytotoxic response
- Hierarchical clustering and supervised machine learning correctly categorized:
 - 82% CLAD
 - 94% non CLAD

Hypothesized that AR and CLAD may both represent allorecognition by specific T cell signatures

Molecular profiling in lung biopsies to predict CLAD

- Hannover group hypothesized that airway fibrosis of CLAD is due to myofibroblasts and excessive matrix production/deposition.
- They analyzed the cellular composition and differential expression of 45 tissue remodeling associated genes
 - 18 patients with CLAD (within 3 years)
 - 18 patients without CLAD
 - 22 genes were significantly upregulated in the CLAD group

Biopsy Molecular profiling in CLAD

Biopsy Molecular profiling in CLAD

Common rejection model in Chronic Lung Rejection

0:

Several studies have suggested similar injury mechanisms in all solid organ transplantation resulting in identification of a chronic rejection module (CRM)

0

CRM (11 genes)
obtained from a
meta- analysis of
public microarray
gene expression data
for biopsy confirmed
acute rejection in all
4 organ transplants
Heart
Liver
Kidney

Lung

03

CRM genes obtained from:

- Transbronchial brushings
- Lung tissue
 - BAL

Common rejection model in Chronic Lung Rejection

no AR	AR		
0.71	2.73		
1.84	9.49		
1.44	34.81		
1.24	17.28		
0.8	1.92		
5.94	17.34		
2.51	5.19		
0.46	2.56		
3.92	13.37		
1.06	2.83		
3.84	6.61		
1.69 (1.35-1.95)	6.61 (4.26-7.04)		
0.17 (0.12-0.30)	2.19 (1.51-2.79)		

Common rejection model in Chronic Lung Rejection

Sequential Gene Expression prior to CLAD

Figure 2a Figure 2b

Immune

Peripheral Gene expression in PGD after Lung Txp

Differences among Gene expression studies

Where	When	Why	How
Peripheral blood	Early	Predictiion	Appropriate BAL technique
BAL	Late	Risk stratification	Microdissection of biopsy lesions
Biopsy	Multiple	Mechanisms	
Brushings	Longitudinal	Phenotypes	
		Targeted str	

The promise of molecular profiling in lung transplantation

- Develop specific disease phenotypes/endotypes
- Risk stratification of patients
- Identify potential mechanisms with targeted therapeutic strategies

