

Using Genomics to Guide Immunosuppression Therapy

David A. Baran, MD, FACC, FSCAI System Director, Advanced HF, Transplant and MCS, Sentara Heart Hospital, Norfolk, VA

TRANSPLANT SUMMIT 2019

NO SIZE FITS ALL: Uncovering the Potential of Personalized Transplantation

Disclosure

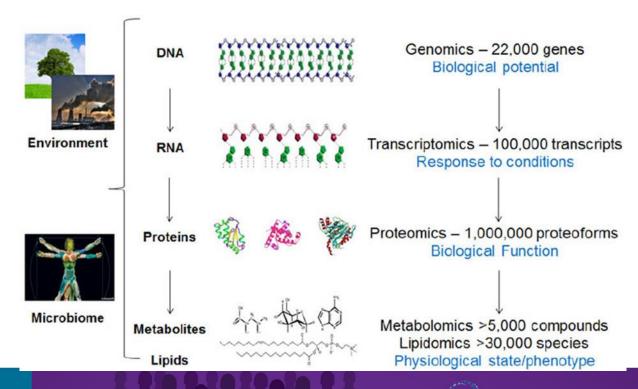
Consulting: Livanova, Getinge, Abbott, Abiomed

Speaker: Novartis

Research: Astellas, Abbott

Learning Objectives

Understand the difference between the different –omics approaches Identify the major areas of research in genomics as they apply to transplantation


Outline

- Guide to the –OMICS
- Genomic work in transplantation
 - Drug metabolism
 - Immunosuppression
 - Assessment of risk of rejection
 - Genomics of active rejection
- Future Directions

Guide to the -OMICS

What is genomic medicine?

 NHGRI defines genomic medicine as "an emerging medical discipline that involves using genomic information about an individual as part of their clinical care (e.g., for diagnostic or therapeutic decision-making) and the health outcomes and policy implications of that clinical use."

Proteome Complexity

GENOME

4 nucleotides.

Double helix.

Same in all cells.

PROTEOME

20 amino acids.

- Each protein has unique 3D shape.
- Differs with cell type.

Even if we get the treasure chest (target gene), we can't open it (because we don't understand its function in disease.)

Current genomic researchers have tried pulling out of all nails on the chest.

However, the number of the nails may be infinite...

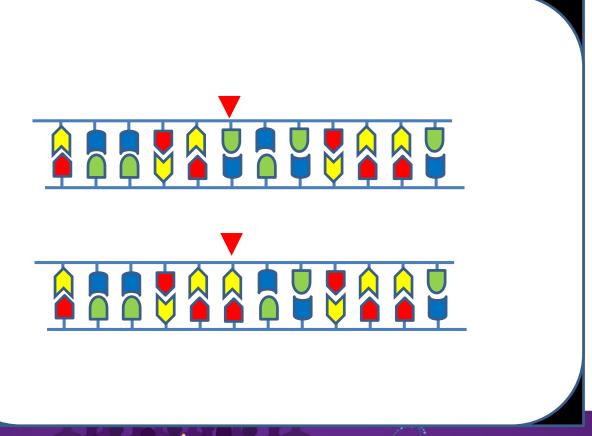
We have got the map (genomic sequence) to find treasure so that we can get treasure chest.

Key to open the chest (Post genomic technology)

Getting treasure (new drugs)!!

"Genetic Testing"

- Not whole genome sequencing
- We sequence small specific pieces
- "Single Nucleotide Polymorphisms"
- Can screen thousands of SNPs on a SNP-Chip



Polymorphism Markers

- Polymorphism marker: Difference of DNA sequence on the genome
- High polymorphism, but the distribution is less and heterogenious
 - Mini-satellite: Repeat of several to tens of base sequence
 - Micro-satellite: Repeat of 1 to 4 base sequence
 - Base insertion and deletion: Insertion / Deletion of 1-tens of base sequence
- Low polymorphism, but are a lot of distributed on genomic DNA uniformly
- Single nucleotide polymorphism (SNP):
 - 1/1000 bases
 - 3-10 millions SNP on human genome

SNPs

- Single Nucleotide
 Polymorphism
- Responsible for 90 % of all human genetic variation
- A SNP occurs every 100-300 Base pairs

- dbSNP database has more than 112 million validated entries
- Most are not responsible for disease

Pharmacogenetics

American Journal of Transplantation 2017: 17: 1008–1019 Wiley Periodicals Inc.

© 2016 The American Society of Transplantation and the American Society of Transplant Surgeons

doi: 10.1111/ajt.14040

Predictive Modeling of Tacrolimus Dose Requirement **Based on High-Throughput Genetic Screening**

```
C. Damon<sup>1,*</sup>, M. Luck<sup>1,2</sup>, L. Toullec<sup>3</sup>, I. Etienne<sup>4</sup>,
```

- M. Buchler⁵, B. Hurault de Ligny⁶,
- G. Choukroun⁷, A. Thierry⁸, C. Vigneau⁹,
- B. Moulin¹⁰, A.-E. Heng¹¹, J.-F. Subra¹²,
- C. Legendre¹³, A. Monnot¹, A. Yartseva¹,
- M. Bateson¹, P. Laurent-Puig^{2,3,14}, D. Anglicheau¹³, P. Beaune^{2,3,14}, M. A. Loriot^{2,3,14}, E. Thervet^{2,15} and N. Pallet^{2,3,14,15,*}

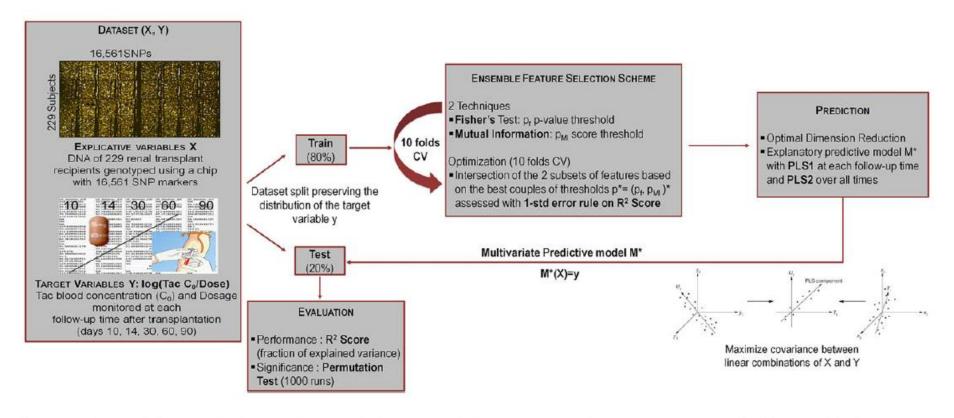


Figure 1: Data-mining methodology. Our predictive approach has two steps. In step 1, an ensemble feature-selection strategy

Table 1: Performance, statistical significance, and complexity of the predictive models at each follow-up time after transplantation (days 10, 14, 30, 60, 90) with PLS1 model and for all times with PLS2 model

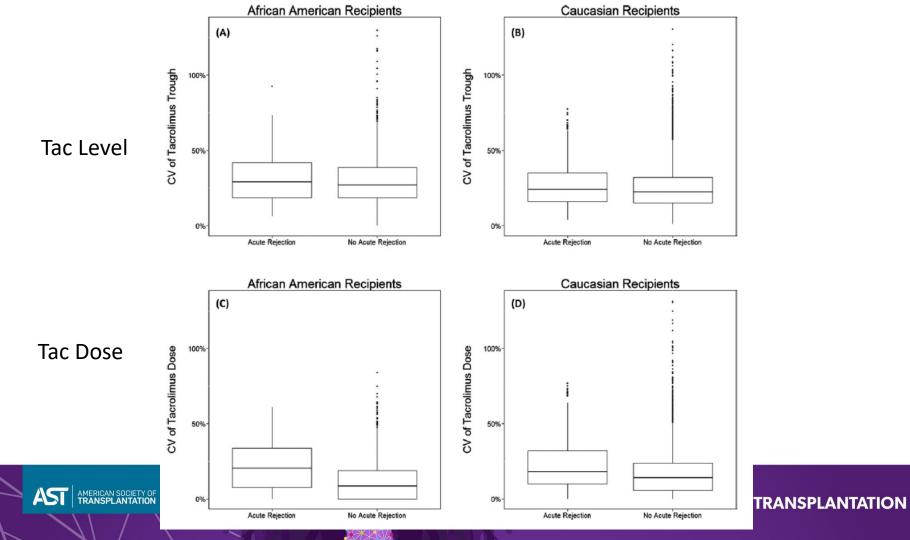
			PLS2 models			
Time after transplantation (days)	10	14	30	60	90	10, 14, 30, 60, and 90 days
Performance (R ² value)	0.30	0.27	0.41	0.7	0.62	0.28
Significance (p-value)	0.001	0.001	0.001	0.001	0.001	0.001
Model complexity (number of SNPs)	5	19	12	44	33	7

PLS, partial least squares; SNP, single-nucleotide polymorphism.

Genetic Component of TAC Metabolism

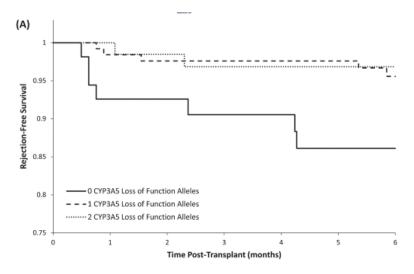
Using a high-throughput genetic screening approach to predict variability of Tac dose requirement in KTRs, we demonstrated (i) that SNP networks explain 30-70% of the interpatient variability of Tac metabolism, depending on the model generated and the time after transplantation; (ii) that gene interaction networks related to oxidoreductase functions and monooxygenase activity, including CYP3A4 and CYP3A5, have a major impact on Tac metabolism; and (iii) that the multidrug transporter ABCC8 and the nucleoside carrier SLC28A3 appear to be involved in Tac metabolism.

ORIGINAL ARTICLE

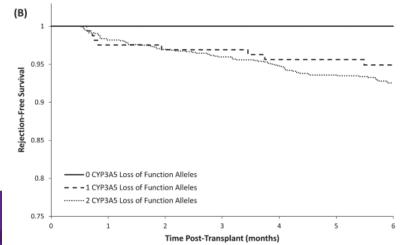

Tacrolimus trough and dose intra-patient variability and CYP3A5 genotype: Effects on acute rejection and graft failure in European American and African American kidney transplant recipients

```
Stephan R. Seibert<sup>1</sup> | David P. Schladt<sup>2</sup> | Baolin Wu<sup>3</sup> | Weihua Guan<sup>3</sup> | Casey Dorr<sup>4</sup> | Rory P. Remmel<sup>5</sup> | Arthur J. Matas<sup>6</sup> | Roslyn B. Mannon<sup>7</sup> | Ajay K. Israni<sup>8</sup> | William S. Oetting<sup>9</sup> | Pamala A. Jacobson<sup>1</sup>
```

Clinical Transplantation. 2018;32:e13424.


	African American		European American			
Variable	Hazard ratio (95% CI)	Р	Hazard ratio (95% CI)	P		
CV of TAC dose (highest quartile) ^a	33.53 (5.54-202.85)	0.0001	1.81 (1.14-2.86)	0.012		
Number of CYP3A5 loss-of-function alleles	0.16 (0.05-0.49)	0.0015	1.51 (0.74-3.11)	0.26		
No. of HLA mismatches						
1 or 2	0.30 (0.01-6.42)	0.85	3.15 (0.87-11.37)	0.0073		
3 or 4	0.37 (0.04-3.71)		3.64 (1.11-11.96)			
5 or 6	0.39 (0.03-4.30)		5.95 (1.82-19.41)			
B- or T-cell crossmatch	3.01 (0.46-19.65)	0.25	2.25 (1.13-4.50)	0.022		
Donor age at transplant	1.01 (0.97-1.06)	0.65	1.02 (1.00-1.04)	0.039		

CV, Coefficient of Variation; HLA, Human Leukocyte Antigen; TAC, tacrolimus.


^{*}Highest CV quartile is >19% for AA and >24% for EA. CV was calculated as described in methods for acute rejection.

African-American Better metabolizers had more rejx

Caucasian

Tac Dosing / Levels

- Seemingly simple
- Actually complex and outcomes are worse for minority of patients who require high doses of tac and may have more variability in achieved levels

Transplant International

REVIEW

Applying genomics in heart transplantation

Brendan J. Keating^{1,2} (D), Alexandre C. Pereira³, Michael Snyder⁴ & Brian D. Piening⁴

Transplant International 2018; 31: 278–290

Genetic Variation

- HLA Class I and 2: Chromosome 6
 - Most polymorphic regions of human genome
- HLA-G
- KIR Family of 13 genes on chromosome 19
 - Educating / regulating NK cells to sense and respond to HLA Class I surface molecules
 - Involved in immune related diseases

Heart Transplant Matching

- HLA Matching is impractical with hearts given constraints on time
- Immunosuppresion has leveled playing field
- Anti-HLA antibodies are bigger issue
- Cross-Reactivities against HLA groups
- Surprising that outcomes are good despite complexity and universal mismatches

GWAS: Genome Wide Association Study

 Any study of genetic variation across the entire human genome that is designed to identify genetic associations with observable traits (such as blood pressure or weight), or the presence or absence of a disease (such as cancer) or condition

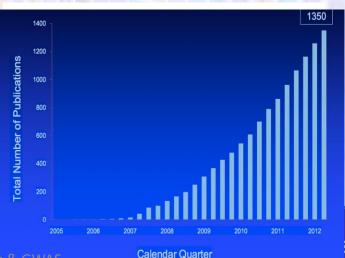
Potential of GWAS

- Hope to personalize medicine
- Compare whole genome with outcome(s) of interest and find SNPs which correlate with desired outcomes
- Find SNPs which are particularly deleterious

The genomics revolution

Sequencing technology

- 1977 Sanger
- 1995 1st bacterial genomes
 - < 10,000</p>


bases per day per machine

- 2003 1st human genome
 - > 10,000,000,000,000
 bases per day per machine

GWAS publications

- 2005 1st GWAS
 - Age-related macular degeneration
- 2014 1,991 publications
 - 14,342 associations

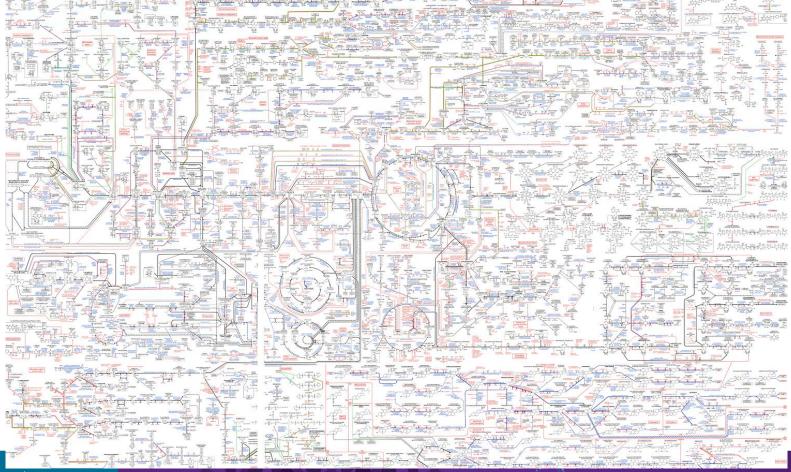
SPLANTATION

A few GWAS discoveries...

Genomics & GWAS

TTING EDGE of **TRANSPLANTATION**

The case of the missing heritability


Why?

- Environment, Gene-Environment interactions
- Complex traits, small effects, rare variants
- Gene expression levels
- GWAS methodology?

The case of the missing heritability

Multivariate methods

Penalized Regression

LASSO penalized regression

The elastic net

Ridge regression

Bayesian Approaches

Bayesian partitioning

Bayesian Logistic Regression

with Stochastic Search

Variable Selection

Bayesian Epistasis Association

Mapping

Mediesting for Association

Factorial Methods

Sparse-PCA

Multi-factor dimensionality

reduction method

Supervised-PCA

DAPC-based FS

Neural Networks

Genetic programming optimized neural networks,

Parametric

"decreasing method

Logic Trees

Logic feature selection

Monte Carlo

Logic regression

Logic Regression

Modified Logic Regression-

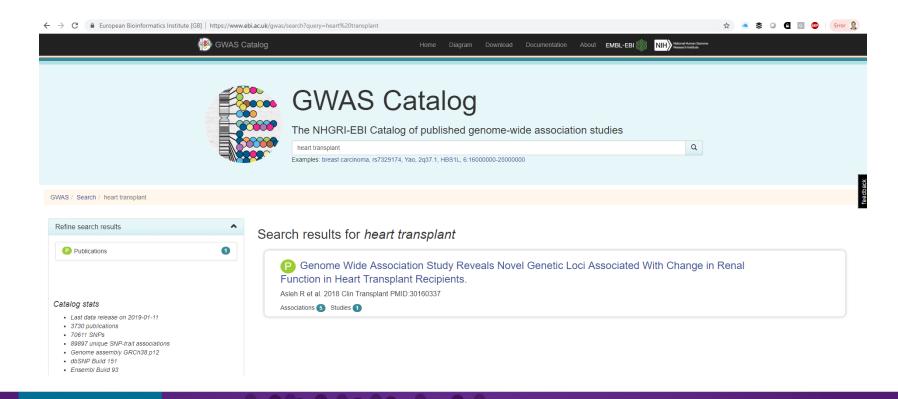
Gene Expression

Programming

Genetic Programming for

Set association Association Studies

approach


Non-parametric Methods

Random forests

Restricted

partitioning method

Combinatorial partitioning

GWAS in Heart Transplant

Received: 29 June 2018

Revised: 13 August 2018

Accepted: 23 August 2018

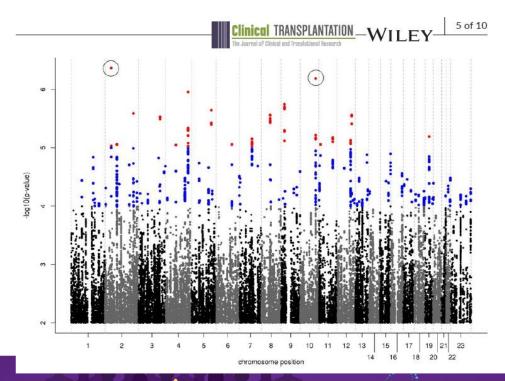
DOI: 10.1111/ctr.13395

ORIGINAL ARTICLE

Genomewide association study reveals novel genetic loci associated with change in renal function in heart transplant recipients

```
Rabea Asleh<sup>1</sup> | David Snipelisky<sup>2</sup> | Matthew Hathcock<sup>3</sup> | Walter Kremers<sup>3</sup> | Duan Liu<sup>4</sup> | Anthony Batzler<sup>3</sup> | Gregory Jenkins<sup>3</sup> | Sudhir Kushwaha<sup>1</sup> | Naveen L. Pereira<sup>1,4</sup>
```

Clinical Transplantation. 2018;32:e13395.



Details

- 251 Heart transplant patients
- Genotyped for 314,903 SNPs
- Primary endpoint was change in GFR at 1 yr post transplant
- Found 3 significant variants
- 2 in long non-coding RNA gene LINC01121
- One in pseudogene BTBD7P2

Many SNP Associations

TABLE 3 Significant genetic polymorphisms associated with the change in renal function

Rs number	Chr.	Base pairs	MA	CA	MAF	β Co.	SE	P-value	t	dosR2	Gene	Gene ID	Variant location
rs17033285	2	45489633	Т	Α	0.09	17.28	3.33	4.30e-07	- 1	0.81	UNQ6975	400952	5'upstream
rs76427116	2	45477781	Т	C	0.05	17.38	3.84	9.28e-06	1	0.90	UNQ6975	400952	Intron
rs4917601	10	113074200	T	Α	0.15	11.64	2.28	6.46e-07	1	0.97	LOC100420392	100420392	5'upstream
rs4617520	10	113062340	С	T	0.12	11.95	2.58	6.07e-06	0		LOC100420392	100420392	5'upstream
rs7095911	10	113066263	G	Α	0.13	11.01	2.39	6.75e-06	1	0.99	LOC100420392	100420392	5'upstream
rs11195513	10	113066650	С	T	0.13	11.01	2.39	6.77e-06	1	0.99	LOC100420392	100420392	5'upstream
rs4465313	10	113072148	G	Α	0.13	10.92	2.37	6.79e-06	1	0.99	LOC100420392	100420392	5'upstream
rs7923594	10	113067280	G	Α	0.13	10.99	2.39	6.95e-06	1	0.99	LOC100420392	100420392	5'upstream
rs4918638	10	113065820	С	G	0.14	10.67	2.33	7.13e-06	1	0.96	LOC100420392	100420392	5'upstream
rs9762450	4	165022251	С	Α	0.24	8.70	1.74	1.11e-06	1	0.97	MARCH1	55016	Intron
rs77044648	4	165029280	Α	С	0.27	8.00	1.71	4.60e-06	1	0.97	MARCH1	55016	Intron
rs11735194	4	165034085	Α	G	0.27	7.96	1.70	4.85e-06	1	0.97	MARCH1	55016	Intron
rs17475702	4	165034536	Α	G	0.27	7.96	1.70	4.86e-06	1	0.97	MARCH1	55016	Intron
rs17579154	4	165035111	T	Α	0.27	7.95	1.70	4.91e-06	1	0.98	MARCH1	55016	Intron
rs10517799	4	165041073	С	Т	0.27	7.92	1.70	5.10e-06	1	0.98	MARCH1	55016	Intron
rs4691111	4	165045284	С	G	0.27	7.82	1.69	6.19e-06	1	0.99	MARCH1	55016	intron
rs34291409	4	165034367	Т	Α	0.24	7.96	1.75	8.35e-06	1	0.97	MARCH1	55016	Intron
rs13146038	4	165030102	G	T	0.24	7.92	1.75	9.35e-06	1	0.97	MARCH1	55016	Intron
rs13135028	4	165046631	С	G	0.25	7.85	1.74	9.66e-06	1	0.99	MARCH1	55016	Intron
rs12057071	9	23759368	С	Α	0.11	13.14	2.68	1.79e-06	1	0.93	ELAVL2	1993	Intron
rs13294337	9	23761695	G	Α	0.11	13.04	2.68	2.00e-06	1	0.94	ELAVL2	1993	Intron
rs1431304	9	23768971	T	Α	0.11	12.93	2.66	2.07e-06	1	0.95	ELAVL2	1993	Intron
rs2891188	9	23756299	С	Т	0.11	13.17	2.71	2.16e-06	1	0.91	ELAVL2	1993	Intron
rs7024224	9	23779696	T	С	0.11	12.25	2.63	5.06e-06	1	0.97	ELAVL2	1993	Intron
rs10966079	9	23781824	С	Т	0.11	12.20	2.62	5.27e-06	1	0.97	ELAVL2	1993	Intron
rs10966081	9	23783743	G	Α	0.11	12.07	2.64	7.58e-06	1	0.97	ELAVL2	1993	Intron
rs918378	5	143201705	G	Α	80.0	14.18	2.93	2.27e-06	0		HMHB1	57824	3'downstream
rs10463361	5	143207881	G	Α	0.09	13.63	2.88	3.75e-06	1	0.99	HMHB1	57824	3'downstream
rs72795604	5	143205918	С	Т	0.09	13.60	2.88	3.88e-06	1	0.99	HMHB1	57824	3'downstream
rs11167832	5	143204776	С	Т	0.09	13.58	2.88	4.00e-06	1	0.99	HMHB1	57824	3'downstream

Chr, chromosome; MA, mutant allele; CA, control allele; β Co., β-coefficient; SE, standard error; I, imputed; O, observed; DosR2, represents the quality of the imputation performed with values ≥0.80 represent high quality.

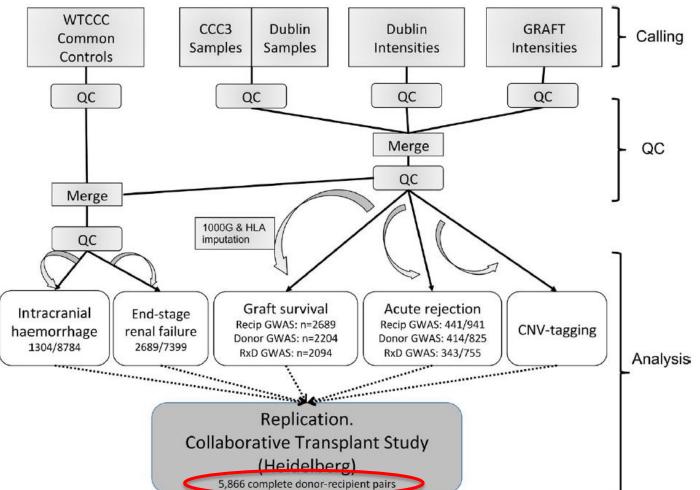
Only Kidney Tx GWAS

ORIGINAL ARTICLE

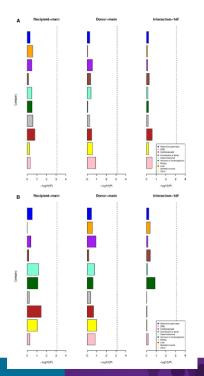
AJT

Long- and short-term outcomes in renal allografts with deceased donors: A large recipient and donor genome-wide association study

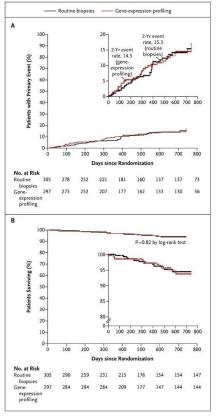
Maria P. Hernandez-Fuentes¹ | Christopher Franklin² | Irene Rebollo-Mesa¹ |


Am J Transplant. 2018;18:1370-1379.

HERNANDEZ-FUENTES et al.


AJT 1373

LANTATION


Results

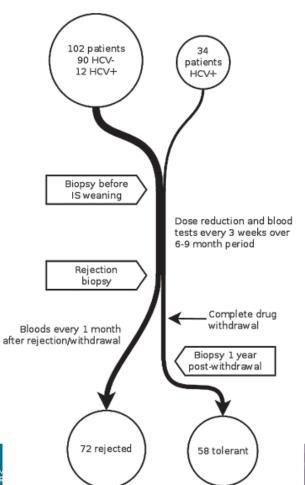
- GWAS failed to show heritable component to explain rejection or graft survival
- Number of patients too small and outcomes are multifactorial

Genomics to Detect Rejection: IMAGE

- 602 pts
- 297 with GEP, 305 with Biopsy surveillance
- Allomap assay uses expression of 11 genes
- GEP non-inferior to Bx

Pham MX et al N Engl J Med. 2010 May 20;362(20):1890-900

Molecular Characterization of Acute Cellular Rejection Occurring During Intentional Immunosuppression Withdrawal in Liver Transplantation


E. Bonaccorsi-Riani^{1,†}, A. Pennycuick^{1,†}, M.-C. Londoño², J.-J. Lozano³, C. Benítez², B. Sawitzki⁴, M. Martínez-Picola², F. Bohne⁵, M. Martínez-Llordella¹, R. Miquel¹, A. Rimola² and A. Sánchez-Fueyo^{1,2,*}

but not HCV-positive, patients. Changes were detectable 1–2 mo before rejection was diagnosed. Our results provide insight into the molecular processes underlying acute cellular rejection in liver transplantation and help clarify the potential utility and limitations of transcriptional biomarkers in this setting.

American Journal of Transplantation 2016; 16: 484–496

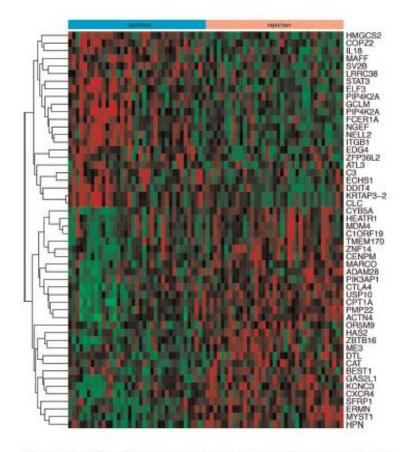
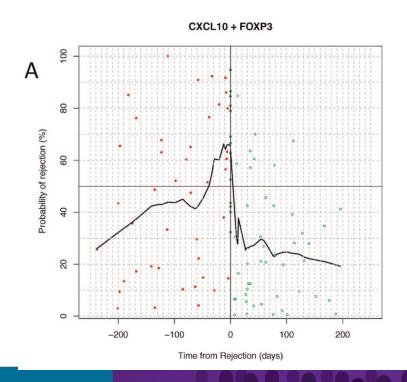
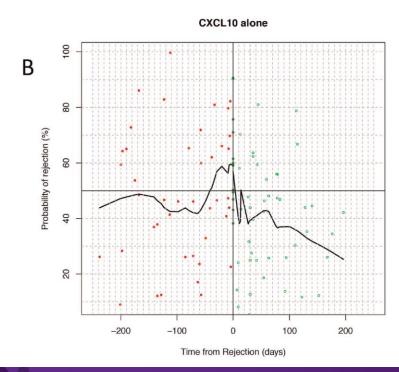




Figure 4: Differentially expressed genes in whole blood. Heat map of the top 50 genes differentially expressed in whole blood based on t-statistic comparing paired baseline (preweaning) and rejection samples. All patients were negative for hepatitis C virus.

Genetic Markers Precede Rejx (Liver)

Conclusion

- Genomics has progressed tremendously
- Improved understanding of problems such as drug metabolism
- Few approaches like Allomap have been successful
- Genomics unlikely to replace other methods of organ surveillance long term

