

Immune approach to Primary Graft Dysfunction

Ankit Bharat MD FACS Harold & Margaret Method Professor Director, Lung Transplant & ECMO

Disclosures

None

PRIMARY GRAFT DYSFUNCTION

- Incidence >50-70%
- Occurs within first 24 hours following transplant
- Characterized by respiratory failure
- Leading cause of short-term mortality
- Predominant risk factor for chronic rejection

PGD INDUCES CYTOKINE STORM AND ALLOIMMUNITY

Spectrum of PGD

NEUTROPHILS MEDIATE PGD

Kreisel D et al. J Clin Invest 2011;121:265–276.

PERFUSED HUMAN DONOR LUNGS CONTAIN MONOCYTES

Bharat et al, AJRCMB, Jan 2016

Zhikun et al, Science Transl Med, 2017

Demonstration of non-classical monocytes in the intravascular space of donor lungs

NCM are visualized at sites of neutrophil recruitment and endothelial injury

Human PGD

LIPOSOMAL CLODRONATE DEPLETES Ly6C^{Iow} MONOCYTES IN PERFUSED LUNGS

Control

Clo-lip

Depletion of donor NCM abrogates neutrophil recruitment and ameliorates PGD

Genetic depletion of donor NCM abrogates neutrophil recruitment

Genetic deletion of fractalkine receptors on NCM inhibits their function

Unbiased transcriptomic profiling of NCM

-	• • •	Process	FDR q-value
Cluster 1		Defense response Inflammatory response Immune response	2.89 x 10 ⁻⁵ 6.54 x 10 ⁻⁵ 3.36 x 10 ⁻⁴
Cluster 2		Regulation of metabolic process Cellular response to stimulus Regulation of signal transduction	7.13 x 10 ⁻¹¹ 4.0 x 10 ⁻⁵ 3.73 x 10 ⁻⁵
Cluster 3		Immune system process Response to biotic stimulus Response to dsRNA	1.48 x 10 ⁻⁴ 2.51 x 10 ⁻² 3 28 x 10 ⁻²
		Response to dsRNA	3.28 x 10 ⁻²

Donor NCM produce MIP-2 in a MyD88-dependent fashion to recruit recipient neutrophils

Effect of MIP-2 Neutralization on Posttransplant Neutrophil Influx

Donor NCM produce MIP-2 following TLR2 stimulation

Monocyte subsets in mice and humans

Classical Monocyte (CM)

CCR2+Ly6C^{high}CX₃CR1^{low}

Nonclassical Monocyte (NCM)

 $Ly6C^{low}CX_{3}CR1^{High}CCR2^{-}$

Depletion of recipient classical monocytes impairs neutrophil extravasation

Control

Depletion of host CM

Inflammatory host-derived classical monocytes are recruited from the spleen

IL-1β production by host classical monocyte is necessary for neutrophil extravasation

IL-1β downregulates ZO-2 in endothelial cells disrupting endothelial barrier

Spleen not merely a monocyte reservoir – A new paradigm for splenic education of monocytes

Bone marrow derived CM receive maturation signals from red pulp macrophages

Hsiao et al, J Clin Invest, 2018

Bharat & Kreisel, Ann Thor Surg, 2018

NORTHWESTERN

62-yr female Emphysema 6L/min O₂ No traditional risks for PGD

CLEVELAND CLINIC

66-yr male, IPF, Pulmonary hypertension, Prior LIMA graft, Cardiopulmonary Bypass

Ischemia time <3 hours for both

All Donor/ Recipient Cultures Negative

No DSA and Cross Match negative

	Pre-reperfusion	Post-reperfusion			
		10m	15m	30m	45m
FiO ₂ (%)	100	30	30	100	100
O ₂ sat(%)	90	100	100	92	93
PaO ₂ (mmHg)	80	150	155	78	82

Autoantibody mediated rejection can mimic PGD

H & E STAINING

COMPLEMENT STAINING

Septal Neutrophils Hyaline membrane Alveolar Damage

Peri-capillary IgG staining

	Serum Autoantibodies	Pre-Transplant	Day of Transplant
	Col V	Strong Positive	Strong Positive
Lung-restricted antigens	K-α1 Tubulin (KAT)	Moderate Positive	Moderate Positive
L	Col I	Mild Positive	Mild Positive
	Col IV	Negative	Negative

TREATMENT

IVIG (1g/kg)

PLASMAPHERESIS

Eculizumab

Rituxamab (375mg/m²)

Maintenance: Tacrolimus, Mycophenolate, Prednisone

Fernandez et al, Ann Thor Surgery, Oct 2016

6-MONTH FEV1 71%

High incidence of pre-existing lung-specific autoantibodies in transplant recipients

Bharat A et al, Ann Thor Surg, 2012

LRA predispose to PGD and chronic rejection

	PGD -ve	PGD +ve	Odds Ratio	CI	р
All (n=142)	41(28.9%)	101(71.1%)			
Antibody –ve	35 (34.5%)	66(65.5%)			
Antibody +ve					
All	6(19.4%)	35(80.6%)	3.09	1.2-8.1	0.02
Two Positive	3(13.6%)	19(86.4%)	0.07	0.9–12.1	0.07
Three Positive	1(6.7%)	14(93.3%)	7.4	0.9–58.9	0.03

Bharat A et al, Ann Thor Surg, 2012

Lung autoantibodies induce rejection of murine lung grafts

Bharat et al, AJRCMB, Nov 2016

Bharat & Kreisel, Ann Thor Surg, 2018

Acknowledgements

Funding R01 HL487967 R01 HL757667

Collaborators

Alexander Misharin, MD, PhD Pulmonary Medicine

Ale McQuattie-Pimentel, MD

Budinger Lab

Dina Arvanitis, PhD Center for Advanced Microscopy

> Daniel Kreisel Washington University