

From Many to One - Applying Big Data to Managing Individual Patients

Titte R Srinivas, MD, FAST Intermountain Healthcare, Murray, UT

Disclosures

- Research funding from Medeor Therapeutics, CareDx
- Will have material covering Rx Match, a Proprietary pharmacogenomic platform deployed at Intermountain and run and marketed by Intermountain Precision Genomics

Ada Lovelace Byron

Punch Cards

A LA MÉMOIRE DE J. M. JACQUARD. No 2 kpue ho faille 1956 Shert key Anne ang

Joseph Marie Jacquard

Ada Lovelace Byron and Analytical Engine

Charles Babbage and the Difference Engine

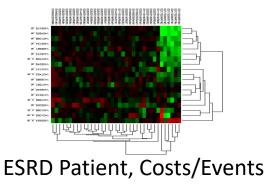
Case

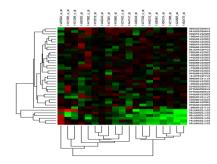
- A 42 year old man transplanted with his second kidney develops acute antibody mediated rejection over the weekend. The surgeon and nephrologist on the case heard a colleague present his preliminary experience with the off label use of bortezomib to treat AMR and decide to use it in this case.
- Bortezomib is used successfully after an emergency consultation with the innovation committee

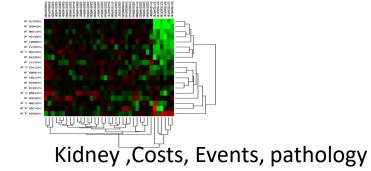
75 years of collective Experience went into this decision making process !

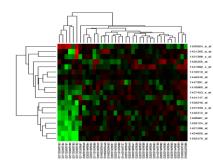
10 Questions for Watson's Human

Watson handler — and IBM lead researcher — David Ferrucci talks about the mind of his machine

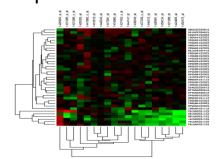

By David Ferrucci | Monday, Mar. 07, 2011

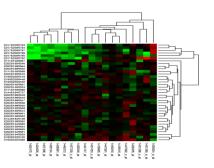



IBM talks about Watson's being used to diagnose diseases. Can a machine make intuitive leaps like the ones Dr. House makes on the TV show?


That's a tough question, because I wonder what intuition really is. It's probably a process like connecting the logical dots, but we call it intuition simply because we're not fully conscious of the process.

The Opportunity




Patient at 6 mo, Costs/Events

•

Transplanted Patient Costs/Events

Transplanted Patient at 6 mo, Costs/Events

Kidney at 6 mo, Costs/events/pathology

Objectives

- Describe an actionable approach to deployment of a predictive analytics solution in the clinic
- Describe a clinical framework for implementation of precision medicine and genomics in the transplant clinic through a case based approach
- Describe differences between traditional statistics and predictive analytics and how these may apply to building a solution

What Does the expression "Big Data" mean ?

- **Definition**: A term that describes large volumes of high velocity, complex, and variable data that require advanced techniques and technologies to enable the capture, storage, distribution, management, and analysis of the information
- Big data goes beyond size and volume to encompass such characteristics as variety, velocity, and, with respect specifically to health care, veracity.
- Big data can be said to comprise five different categories, or streams, of information

Components of Big Data in Health Care

- a) Web and Social Media Data
- **b)** Machine to machine data: Sensors; Think readings and the electronics that generate readings
- c) Big Transaction Data: Billing, payments, adjustments, subsidies
- d) Biometric data: Fingerprints, genetics, handwriting, retinal scans, and similar types of data. This would also include X-rays and other medical images, blood pressure, pulse and pulse-oximetry readings, and other similar types of data
- e) Human-generated data: Unstructured and semi-structured data such as electronic medical records (EMRs), physicians' notes, email, and paper documents

Current Data Structure

- OPTN and SRTR data though comprising large data sets, are highly structured
- They do not capture longitudinal evolution of clinical patterns
- Traditional analytic approaches that are model based are appropriate
- Current utilization is mainly regulatory and generates research data that are based on associations
- Cottage industry based on "regulatory workarounds"

Background

- Predictive models in kidney transplantation derived from national data (UNOS, SRTR) lack longitudinal patient level data, thereby limiting effectiveness
- Adding patient level data capturing dynamic post-transplant clinical evolution to predictive models, may improve predictive accuracy for graft loss (GL) risk.
- Complete capture of patient level clinical data in real time would require an approach that extracts, collates and curates both structured and unstructured data from electronic health records (EHR)
- These large amounts of data are notable for volume, velocity, variety and, verified veracity; **An** operational definition of Big Data
- Analytic techniques should be able to handle such data

Attributes of the Ideal Predictive Model for Graft Loss

- Appropriate to Center's Population and customizable
- Ability to discriminate across levels of risk
- Feasibility of build around clinically actionable variables
- Uses data available within the EMR that are collected in the context of standard patient care
- Biologically relevant to the extent of current understanding including social determinants and care processes
- Ability to inform on individual patient trajectories and capture dynamic longitudinal clinical evolution in the temporal context of routine clinical care

Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation

T. H. HOSTETTER, J. L. OLSON, H. G. RENNKE, M. A. VENKATACHALAM, AND B. M. BRENNER Laboratory of Kidney and Electrolyte Physiology and Departments of Medicine and Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115

AJP Renal 1981

• Hyperfiltration will be associated with a constant serum creatinine level despite ongoing nephron loss

Subtle Acquired Renal Injury as a Mechanism of Salt-Sensitive Hypertension

Richard J. Johnson, M.D., Jaime Herrera-Acosta, M.D., George F. Schreiner, M.D., Ph.D., and Bernardo Rodríguez-Iturbe, M.D. March 21, 2002 N Engl J Med 2002; 346:913-923

- The transplanted kidney is a substrate for acute and chronic tubulointerstitial injury
- Loss of renal function will be associated with sympatho adrenal activity with variable blood pressure and heart rate
- Loss of interstitial function will manifest as anemia, acid-base and potassium abnormalities

The Auxometric Dimension A New Method for Using Rate of Growth in Prognostic Staging of Breast Cancer

Mary E. Charlson, MD; Alvan R. Feinstein, MD

JAMA. 1974;228(2):180-185. doi:10.1001/jama.1974.03230270024019

Clinical Evolution

Well Patient	Unwell Patient
Stable creatinine slope	Deteriorating or variable slope
Absence of proteinuria	Presence of proteinuria
Normal acid base status and potassium	Acidosis, hyperkalemia
Improving and stable Hematocrit	Subtle deterioration in hematocrit before manifest anemia
Absence of Virem a	Sur dry vitemia
Maintenance imunos uppression at prescribed intensity	Variability, escalation, switches
Maintained BP with minimal agents or none	Difficult to control or uncontrolled BP
Metabolic normalcy	Diabetes, obesity, dyslipidemia
Absence of Events: Rejection, Readmission, Death, ESRD, CVD; Time to event ad infinitum	Finite time to event

Objectives

- Articulate an approach to capture longitudinal post-transplant clinical evolution among kidney transplant recipients by capturing structured and unstructured elements from the EHR
- Build predictive models for graft loss and mortality using patient level data
- Compare model performance with those derived of national data
- Deploy predictive models in a clinician facing interface through the electronic medical record to drive post transplant clinical care

Methods

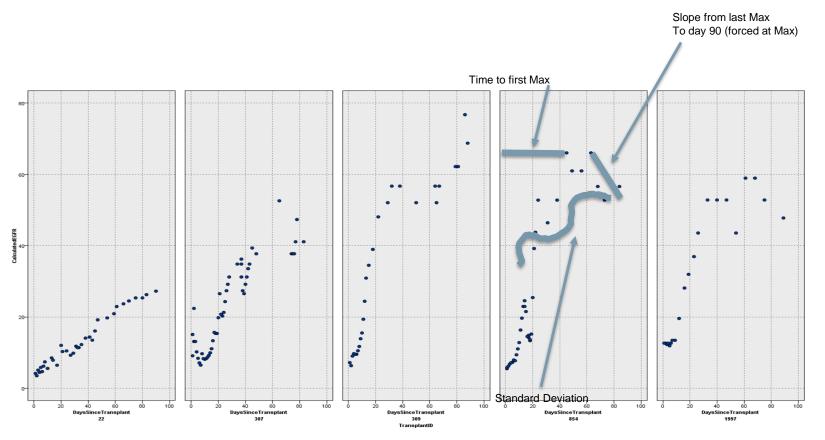
- Structured data were directly extracted from electronic medical records (Epic, Transplant Database and OPTN data elements)
- IBM Watson Content Analytics Studio was applied to unstructured text to extract Banff lesion scores and vital signs from pathology reports and dictated clinician notes
- IBM SPSS Modeler and Essentials for R were used for statistical analyses

Variable	Source	Category				
KDRI	UNOS	Kidney Quality				
Caregiver Status	Transplant Database	Social Determinant				
Education Status	Transplant Database Social Determinant					
ICD-10 Comorbidities	EHR;	Comorbidities; Cardiometabolic risk				
Banff Lesion Scores	EHR, NLP	Immunologic Risk				
CMV, BKV PCRs	EHR	Immunologic Risk				
Cardiovascular events	EHR	CV Risk; Access to care				
Blood Pressures, Blood sugars	EHR, NLP	Biology, Cardiometabolic risk				
Hemoglobin and eGFR Slopes/trajectories	EHR	Biology of Kidney Function				
Readmit Counts	EHR	Processes of care, Access to care				

Variable	Source	Category			
KDRI	UNOS	Kidney Quality			
Caregiver Status	Transplant Database	Social Determinant			
Education Status	Transplant Database Social Determinant				
ICD-10 Comorbidities	EHR	Comorbidities; Cardiometabolic risk			
Banff Lesion Scores	EHR, NLP	Immunologic Risk			
CMV, BKV PCRs	EHR	Immunologic Risk			
Cardiovascular events	EHR	CV Risk; Access to care			
Blood Pressures, Blood sugars	EHR, NLP	Biology, Cardiometabolic risk			
Hemoglobin and eGFR Slopes/trajectories	EHR	Biology of Kidney Function			
Readmit Counts	EHR	Processes of care, Access to care			

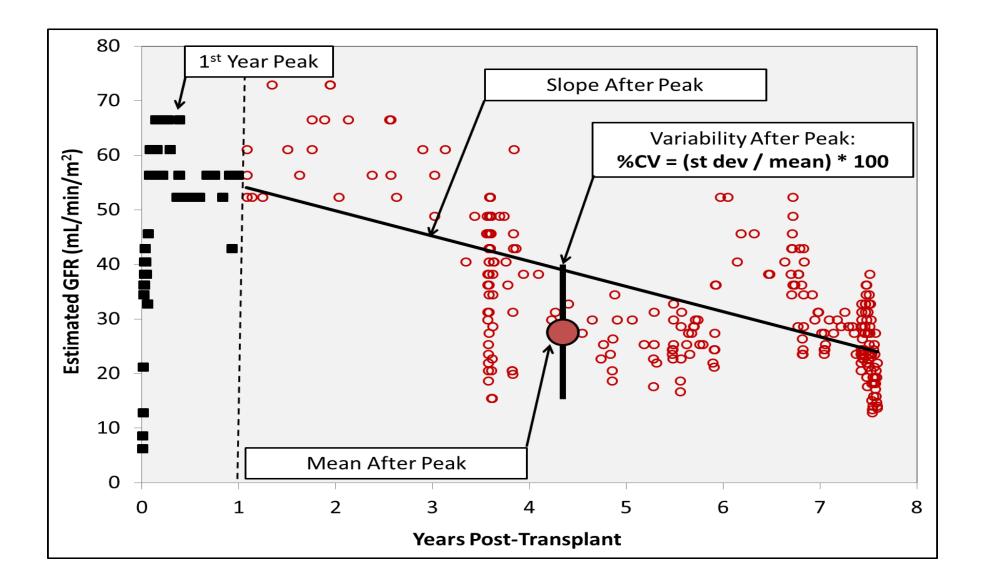
Variable	Source	Category			
KDRI	UNOS	Kidney Quality			
Caregiver Status	Transplant Database Social Determinant				
Education Status	Transplant Database Social Determinant				
ICD-10 Comorbidities	EHR; Comorbidities; Cardiometabolic risk				
Banff Lesion Scores	EHR, NLP	Immunologic Risk			
CMV, BKV PCRs	EHR	Immunologic Risk			
Cardiovascular events	EHR	CV Risk; Access to care			
Blood Pressures, Blood sugars	EHR, NLP	Biology, Cardiometabolic risk			
Hemoglobin and eGFR Slopes/trajectories	EHR	Biology of Kidney Function			
Readmit Counts	EHR	Processes of care, Access to care			

Variable	Source	Category			
KDRI	UNOS	Kidney Quality			
Caregiver Status	Transplant Database	Social Determinant			
Education Status	Transplant Database Social Determinant				
ICD-10 Comorbidities	EHR;	Comorbidities; Cardiometabolic risk			
Banff Lesion Scores	EHR, NLP	Immunologic Risk			
CMV, BKV PCRs	EHR	Immunologic Risk			
Cardiovascular events	EHR	CV Risk; Access to care			
Blood Pressures, Blood sugars	EHR, NLP	Biology, Cardiometabolic risk			
Hemoglobin and eGFR Slopes/trajectories	EHR	Biology of Kidney Function			
Readmit Counts	EHR	Processes of care, Access to care			

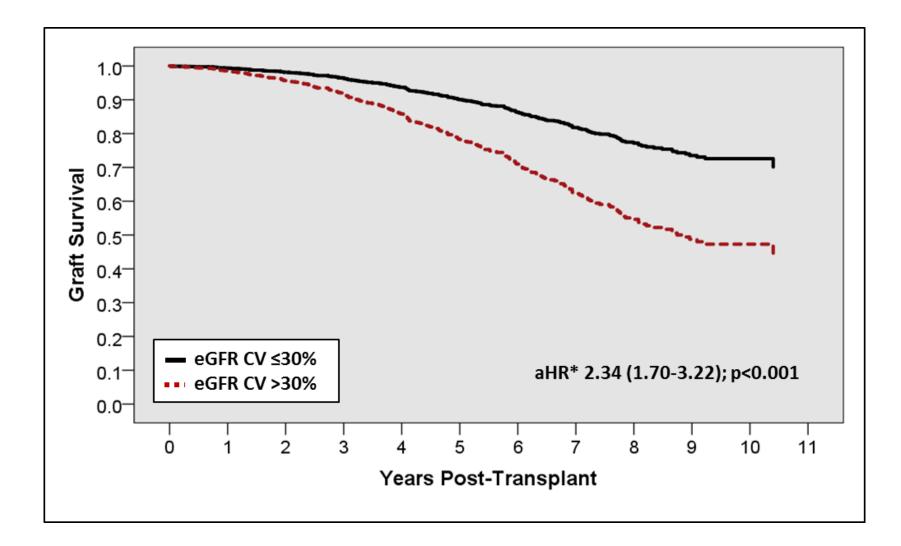

Variable	Source	Category			
KDRI	UNOS	Kidney Quality			
Caregiver Status	Transplant Database	Social Determinant			
Education Status	Transplant Database Social Determinant				
ICD-10 Comorbidities	EHR;	Comorbidities; Cardiometabolic risk			
Banff Lesion Scores	EHR, NLP	Immunologic Risk			
CMV, BKV PCRs	EHR	Immunologic Risk			
Cardiovascular events	EHR	CV Risk; Access to care			
Blood Pressures, Blood sugars	EHR, NLP	Biology, Cardiometabolic risk			
Hemoglobin and eGFR Slopes/trajectories	EHR	Biology of Kidney Function			
Readmit Counts	EHR	Processes of care, Access to care			

Variable	Source	Category			
KDRI	UNOS	Kidney Quality			
Caregiver Status	Transplant Database	Social Determinant			
Education Status	Transplant Database Social Determinant				
ICD-10 Comorbidities	EHR;	Comorbidities; Cardiometabolic risk			
Banff Lesion Scores	EHR, NLP	Immunologic Risk			
CMV, BKV PCRs	EHR	Immunologic Risk			
Cardiovascular events	EHR	CV Risk; Access to care			
Blood Pressures, Blood sugars	EHR, NLP	Biology, Cardiometabolic risk			
Hemoglobin and eGFR Slopes/trajectories	EHR	Biology of Kidney Function			
Readmit Counts	EHR	Processes of care, Access to care			

Variable	Source	Category				
KDRI	UNOS	Kidney Quality				
Caregiver Status	Transplant Database	Social Determinant				
Education Status	Transplant Database Social Determinant					
ICD-10 Comorbidities	EHR;	Comorbidities; Cardiometabolic risk				
Banff Lesion Scores	EHR, NLP	Immunologic Risk				
CMV, BKV PCRs	EHR	Immunologic Risk				
Cardiovascular events	EHR	CV Risk; Access to care				
Blood Pressures, Blood sugars	EHR, NLP	Biology, Cardiometabolic risk				
Hemoglobin and eGFR Slopes/trajectories	EHR	Biology of Kidney Function				
Readmit Counts	EHR	Processes of care, Access to care				


Variable	Source	Category			
KDRI	UNOS	Kidney Quality			
Caregiver Status	Transplant Database	Social Determinant			
Education Status	Transplant Database Social Determinant				
ICD-10 Comorbidities	EHR;	Comorbidities; Cardiometabolic risk			
Banff Lesion Scores	EHR, NLP	Immunologic Risk			
CMV, BKV PCRs	EHR	Immunologic Risk			
Cardiovascular events	EHR	CV Risk; Access to care			
Blood Pressures, Blood sugars	EHR, NLP	Biology, Cardiometabolic risk			
Hemoglobin and eGFR Slopes/trajectories	EHR	Biology of Kidney Function			
Readmit Counts	EHR	Processes of care, Access to care			

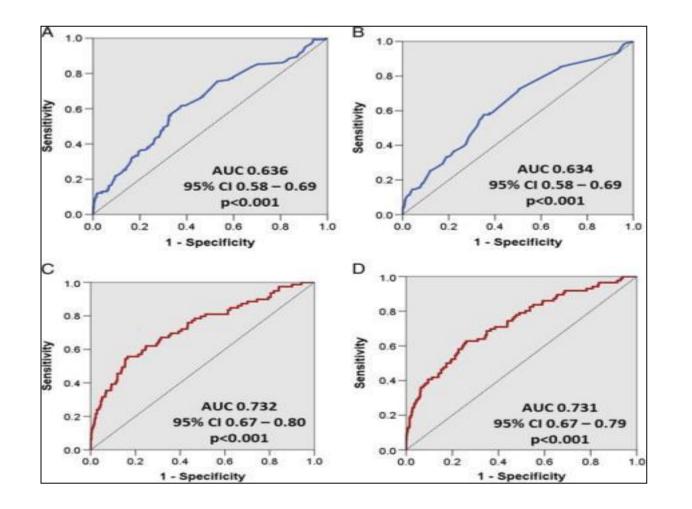
eGFR: TRAJECTORY



Similar approaches can be used to incorporate hemoglobin, blood pressure and heart rates into longitudinal models

Srinivas TR et al, Am J Transplant 2017

Am Transplant Congress Chicago 2017


- Renal Function Variability is Independently Associated with Graft Loss and Death In Kidney Transplants
- This may reflect dysautoregulation events cumulatively leading to irreversible graft damage

eGFR and Tacrolimus Trough Variability and Graft Outcomes

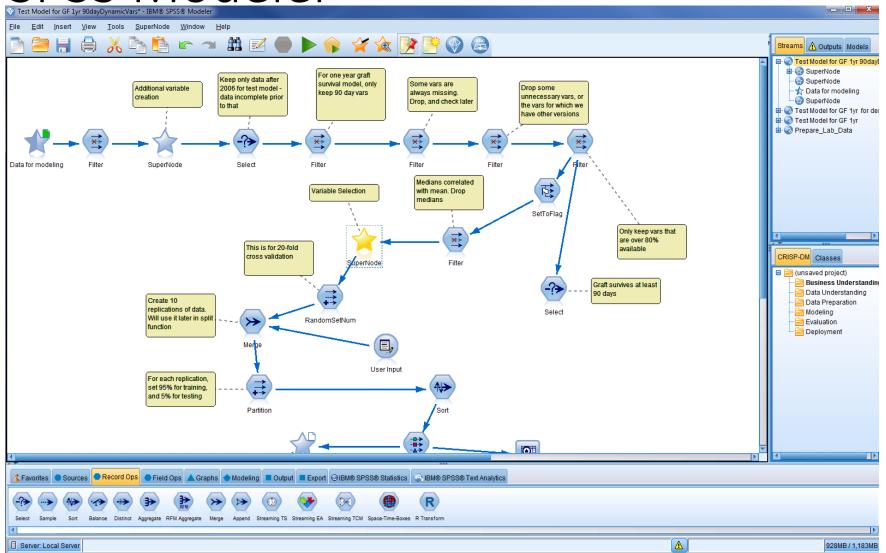
Characteristic	EGFR CV <30%	eGFR CV ≥30%	p-Value	
	(N=1,229)	(n=314)		
Delayed Graft Function	14.6%	9.9%	0.030	
Biopsy Proved Acute Rejection	8.9%	32.5%	<0.001	
Tacrolimus Trough %CV (±SD)	44.7±14.1	51.9±13.8	<0.001	
eGFR Variables				
1 st Year Peak (mL/min±SD)	65.7±20.1	65.9±20.9	0.904	
Mean After Peak (mL/min±SD)	56.0±18.1	37.2±14.7	<0.001	
%CV (±SD)	14.9±6.5	48.6±17.5	<0.001	
Slope After Peak (mL/min/year±SD)	-1.8±8.8	-11.2±13.3	<0.001	
Estimated Overall Graft Survival				
1-Year	95%	87%	0.004	
3-Year	91%	68%	<0.001	
5-Year	86%	45%		
Estimated Patient Survival				
1-Year	97%	96%		
3-Year	95%	87%	<0.001	
5-Year	91%	74%		

eGFR and Tacrolimus Trough Variability and Graft Outcomes

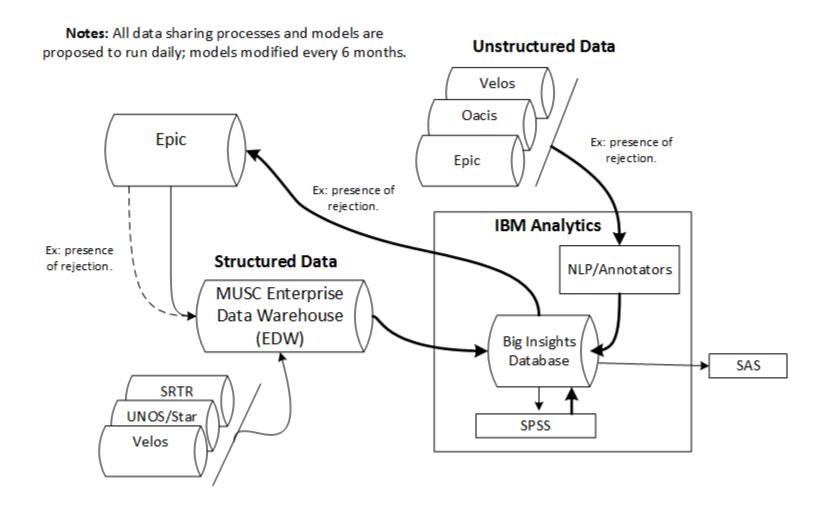
	EGFR	eGFR	
Characteristic	CV <30%	CV ≥30%	p-Value
	(N=1,229)	(n=314)	
Delayed Graft Function	14.6%	9.9%	0.030
Biopsy Proved Acute Rejection	8.9%	32.5%	<0.001
Tacrolimus Trough %CV (±SD)	44.7±14.1	51.9±13.8	<0.001
eGFR Variables			
1 st Year Peak (mL/min±SD)	65.7±20.1	65.9±20.9	0.904
Mean After Peak (mL/min±SD)	56.0±18.1	37.2±14.7	<0.001
%CV (±SD)	14.9±6.5	48.6±17.5	<0.001
Slope After Peak (mL/min/year±SD)	-1.8±8.8	-11.2±13.3	<0.001
Estimated Overall Graft Survival			
1-Year	95%	87%	.0.001
3-Year	91%	68%	<0.001
5-Year	86%	45%	
Estimated Patient Survival			
1-Year	97%	96%	0.001
3-Year	95%	87%	<0.001
5-Year	91%	74%	

Inclusion of Dynamic Clinical Data Improves the Predictive Performance of a 30-Day Readmission Risk Model in Kidney Transplantation. Taber, David; Palanisamy, Arun; Srinivas, Titte; Gebregziabher, Mulugeta; Odeghe, John; Chavin, Kenneth; Egede, Leonard; Baliga, Prabhakar

Transplantation. 99(2):324-330, February 2015. DOI: 10.1097/TP.0000000000000565


FIGURE 1 . Comparison of predictive model accuracy based on the input of fixed and dynamic variables. There are the ROC curves for the 4 predictive models. (A and B) Initial and final ROC curves for the models using fixed variables listed in Table 1, respectively. (C and D) Initial and final ROC curves that use both the fixed and dynamic variables listed in Tables 1 and 2, respectively.

NLP and Banff Lesion Scores

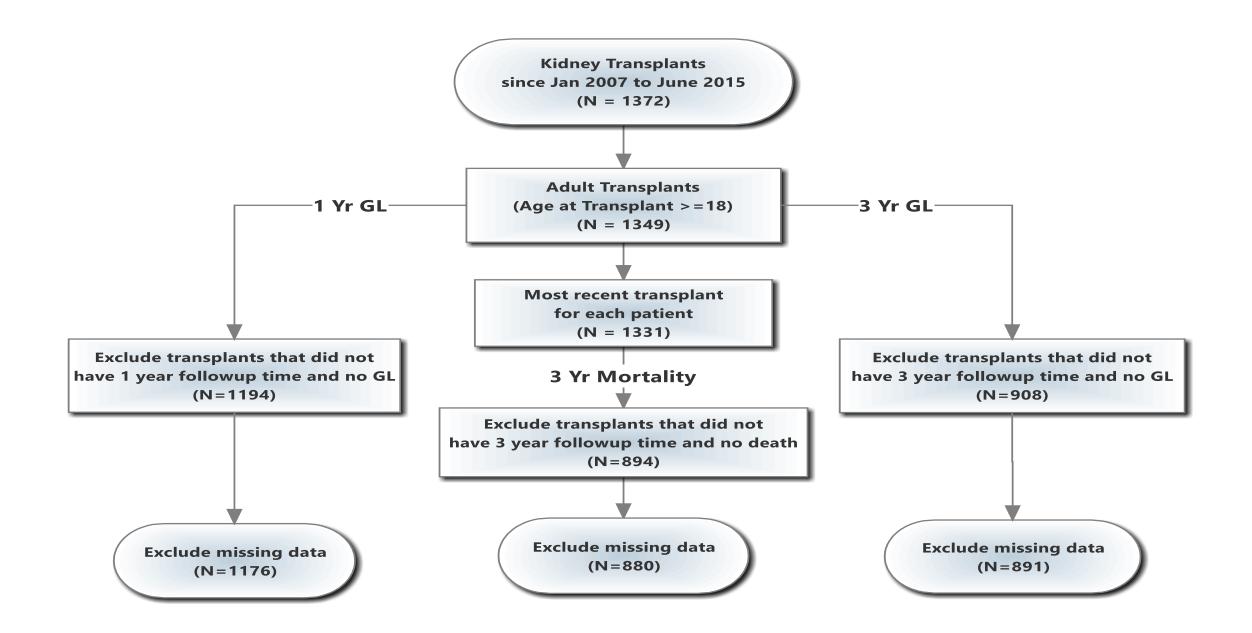

10:25 AM - Lab In Hiseven Interface

mponent Res Component SURG PATH		PORT								
Accession	#:									
		acute r	ejectio	n	ci0,	ct0,	ptc0,	cv0,	mm0,	tiO,

IBM SPSS Modeler

Workflow of Data Extraction, Storage, Analysis and Deployment

Predictive Models


- Data up to 90 days post transplant used for the 1 year graft loss models
- Data up 1 year post transplant used for the 3 year graft loss models

Statistical Analysis

Risk models were developed for 1 year GL and Mortality, and 3 Year GL and Mortality)

Each of these risk models incorporated variables as follow:

- Model 1: OPTN/UNOS/SRTR variables
- Model 2: UNOS + Tx Database Variables
- Model 3: UNOS + Tx Database + EHR Comorbidities
- **Model 4:** UNOS + Tx Database + NLP variables + Trajectory variables

	Odds Ratios; Logistic (Firth)				
		95% Profile-Li			
	Odds Ratio	Confidence	p-value		
Model 1: UNOS					
KDRI	3.953	2.184	7.158	<0.0001	
Age at Transplant	0.987	0.970	1.004	0.132	
Female	0.588	0.360	0.936	0.025	
Blood Type B	1.542	0.883	2.596	0.124	

Model 2: UNOS +				
Transplant Database				
KDRI	4.117	2.265	7.493	<0.0001
Age At Transplant	0.986	0.969	1.003	0.104
Female	0.622	0.380	0.994	0.047
Blood Type B	1.450	0.826	2.451	0.189
Primary caregiver	0.486	0.305	0.784	0.003

	Odds Ratios; Logistic (Firth)				
		95% Profile-Li	kelihood		
	Odds Ratio	Confidence	p-value		
Model 1: UNOS					
KDRI	3.953	2.184	7.158	<0.0001	
Age at Transplant	0.987	0.970	1.004	0.132	
Female	0.588	0.360	0.936	0.025	
Blood Type B	1.542	0.883	2.596	0.124	

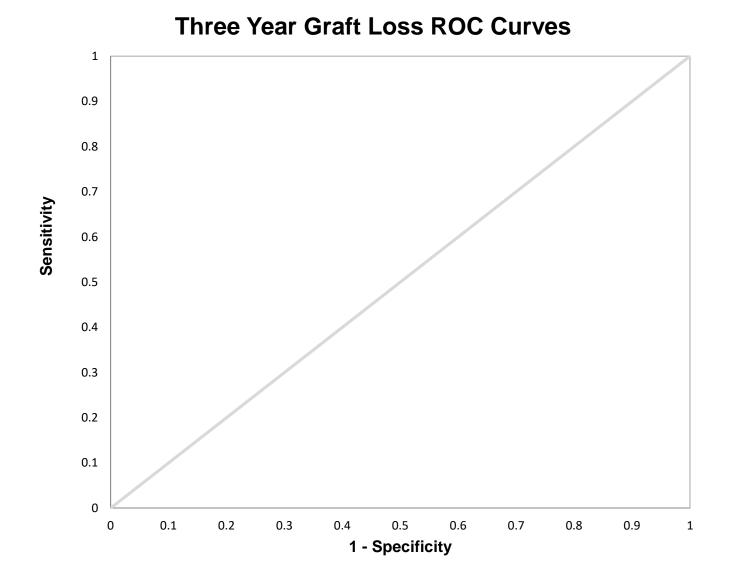
Model 2: UNOS +				
Transplant Database				
KDRI	4.117	2.265	7.493	<0.0001
Age At Transplant	0.986	0.969	1.003	0.104
Female	0.622	0.380	0.994	0.047
Blood Type B	1.450	0.826	2.451	0.189
Primary caregiver	0.486	0.305	0.784	0.003

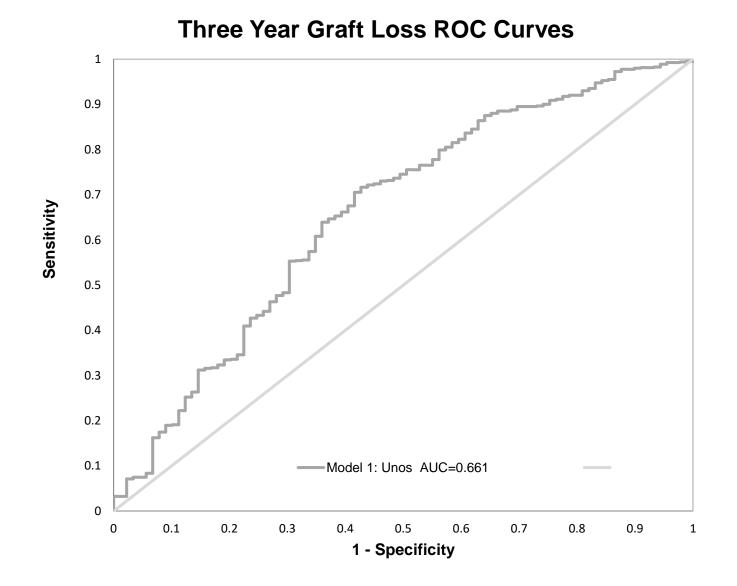
	Odds Ratios; Logistic (Firth)				
		95% Profile-Li			
	Odds Ratio	Confidence	p-value		
Model 1: UNOS					
KDRI	3.953	2.184	7.158	<0.0001	
Age at Transplant	0.987	0.970	1.004	0.132	
Female	0.588	0.360	0.936	0.025	
Blood Type B	1.542	0.883	2.596	0.124	

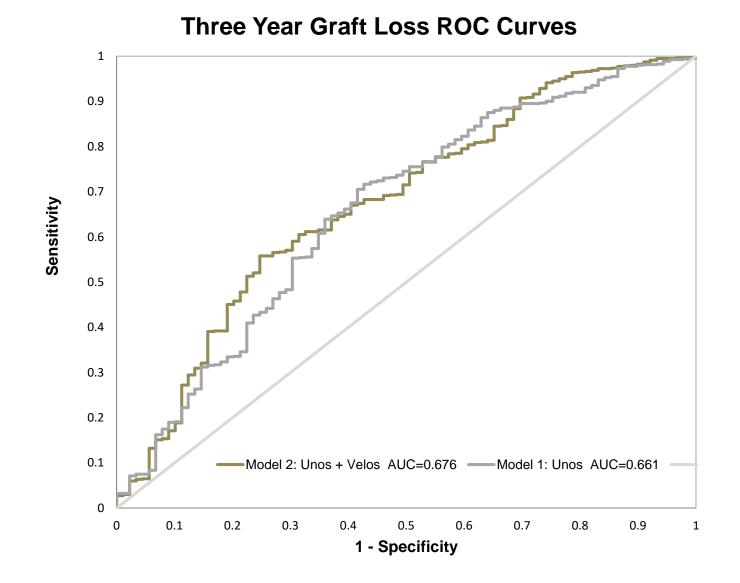
Model 2: UNOS +				
Transplant Database				
KDRI	4.117	2.265	7.493	<0.0001
Age At Transplant	0.986	0.969	1.003	0.104
Female	0.622	0.380	0.994	0.047
Blood Type B	1.450	0.826	2.451	0.189
Primary caregiver	0.486	0.305	0.784	0.003

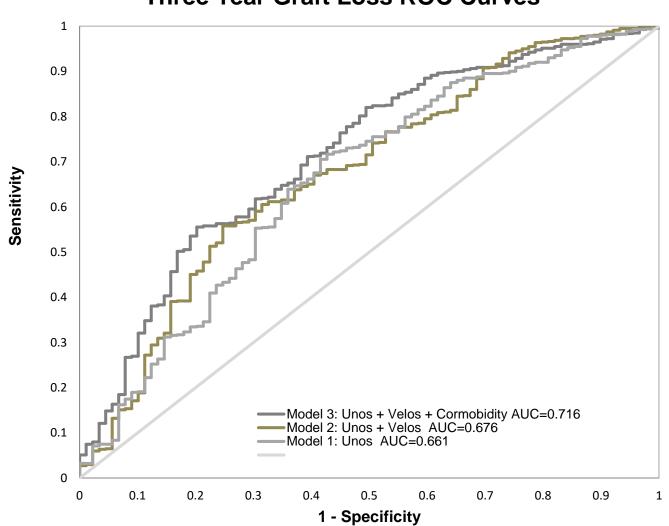
Model 3: UNOS + Transplant Database + Comorbidity	OR	95 Per	cent Cl	Р
	(
KDRI	4.222	2.319	7.705	<0.0001
Age At Transplant	0.985	0.968	1.003	0.095
Female	0.627	0.377	1.017	0.059
Blood Type B	1.462	0.832	2.480	0.181
Primary caregiver	0.507	0.316	0.823	0.006
Cerebrovascular Disease	0.250	0.027	0.984	0.047
Cardiac Arrhythmias	1.705	1.027	2.777	0.039
Alcohol Abuse	2.479	0.807	6.521	0.107
Depression	1.841	0.936	3.433	0.076

Model 3: UNOS + Transplant Database + Comorbidity	OR	95 '	% CI	р
KDRI	4.222	2.319	7.705	<0.0001
AgeAtTransplant	0.985	0.968	1.003	0.095
Female	0.627	0.377	1.017	0.059
Blood Type B	1.462	0.832	2.480	0.181
Primarycaregiver	0.507	0.316	0.823	0.006
Cerebrovascular Disease	0.250	0.027	0.984	0.047
Cardiac Arrhythmias	1.705	1.027	2.777	0.039
Alcohol Abuse	2.479	0.807	6.521	0.107
Depression	1.841	0.936	3.433	0.076

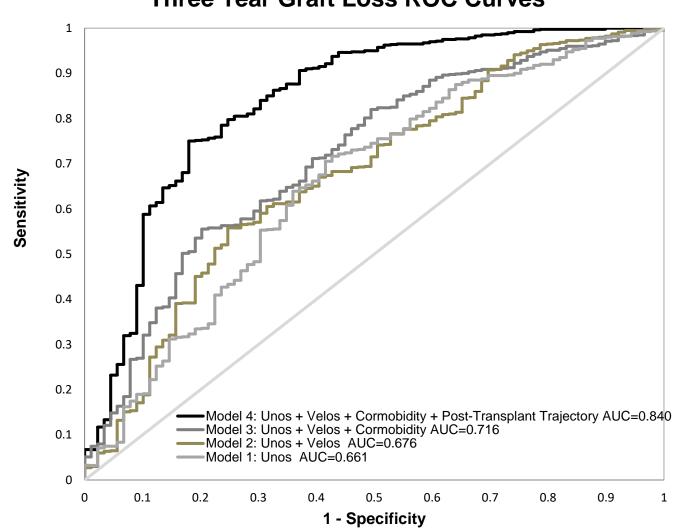

Model 4: UNOS + Tx Database + Comorbidity +				
Post-Transplant Trajectory	OR	95	% CI	р
KDRI	2.855	1.388	5.848	0.004
Age At Transplant	0.975	0.955	0.995	0.016
Female	0.589	0.328	1.030	0.064
Primary caregiver	0.383	0.222	0.666	0.001
Cerebrovascular Disease	0.264	0.028	1.126	0.076
Cardiac Arrhythmias	1.489	0.829	2.621	0.180
Alcohol Abuse	3.187	0.872	9.822	0.077
Depression	1.908	0.872	3.941	0.103
Pulse Pressure Std Dev 1yr	1.132	1.057	1.211	0.000
Acute MI 1yr	10.550	2.094	48.510	0.006
Cardiac or Vascular Event 1yr	2.514	1.441	4.360	0.001
HGB Mean 7d to 1yr	0.873	0.713	1.063	0.178
HGB Slope 7d to 1yr	0.000	0.000	0.134	0.001
Pulse Mean 1yr	1.022	0.993	1.053	0.134
Calc eGFR S Dev 1yr	0.964	0.926	1.000	0.050
Days SinceTX First Max eGFR 1yr	0.997	0.994	1.000	0.047
Transplant LOS	1.053	0.963	1.128	0.198
Acute Banff Score Max 1yr	1.356	1.212	1.521	<0.0001


Model 4: UNOS + Tx Database + Comorbidity +				
Post-Transplant Trajectory	OR	95	% CI	р
KDRI	2.855	1.388	5.848	0.004
Age At Transplant	0.975	0.955	0.995	0.016
Female	0.589	0.328	1.030	0.064
Primary caregiver	0.383	0.222	0.666	0.001
Cerebrovascular Disease	0.264	0.028	1.126	0.076
Cardiac Arrhythmias	1.489	0.829	2.621	0.180
Alcohol Abuse	3.187	0.872	9.822	0.077
Depression	1.908	0.872	3.941	0.103
Pulse Pressure Std Dev 1yr	1.132	1.057	1.211	0.000
Acute MI comp 1yr	10.550	2.094	48.510	0.006
Cardiac or Vascular Event 1yr	2.514	1.441	4.360	0.001
Hgb Mean 7d to 1yr	0.873	0.713	1.063	0.178
Hgb Slope 7d to1yr	0.000	0.000	0.134	0.001
Pulse Mean 1yr	1.022	0.993	1.053	0.134
eGFR S Dev 1yr	0.964	0.926	1.000	0.050
Days Since TX First Max eGFR 1yr	0.997	0.994	1.000	0.047
Transplant LOS	1.053	0.963	1.128	0.198
Acute Banff Score Max 1yr	1.356	1.212	1.521	<0.0001

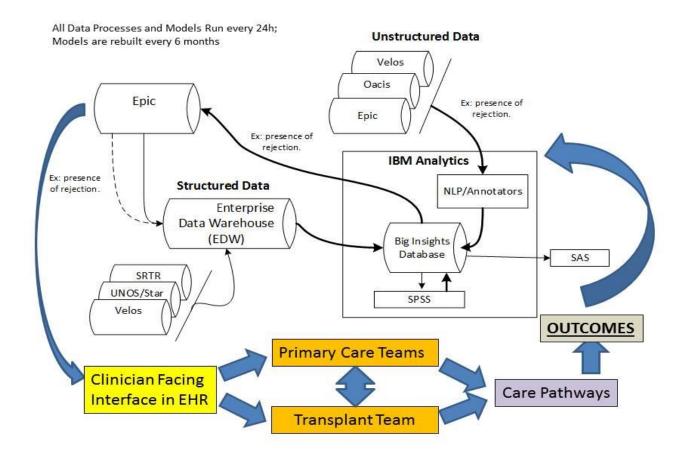

Model 4: UNOS + Tx Database + Comorbidity + Post-Transplant Trajectory	OR	95	% CI	р
KDRI	2.855	1.388	5.848	0.004
Age At Transplant	0.975	0.955	0.995	0.016
Female	0.589	0.328	1.030	0.064
Primary caregiver	0.383	0.222	0.666	0.001
Cerebrovascular Disease	0.264	0.028	1.126	0.076
Cardiac Arrhythmias	1.489	0.829	2.621	0.180
Alcohol Abuse	3.187	0.872	9.822	0.077
Depression	1.908	0.872	3.941	0.103
Pulse Pressure Std Dev 1yr	1.132	1.057	1.211	0.000
Acute MI 1yr	10.550	2.094	48.510	0.006
Cardiac orVascular_Event_1yr	2.514	1.441	4.360	0.001
Hgb Mean 7d to 1yr	0.873	0.713	1.063	0.178
Hgb Slope 7d to 1yr	0.000	0.000	0.134	0.001
Pulse Mean 1yr	1.022	0.993	1.053	0.134
eGFR Std dev 1yr	0.964	0.926	1.000	0.050
Days Since TX First Max eGFR 1yr	0.997	0.994	1.000	0.047
Transplant LOS	1.053	0.963	1.128	0.198
Acute Banff Score 1yr	1.356	1.212	1.521	<0.0001
	Sr	inivas et al <i>,</i> Am J T	ransplant 2017	

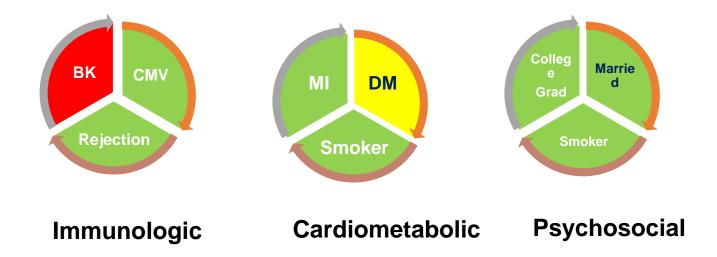

Model 4: UNOS +Tx database + Comorbidity +				
Post-Transplant Trajectory	OR	95	95 % Cl	
KDRI	2.855	1.388	5.848	0.004
Age At Transplant	0.975	0.955	0.995	0.016
Female	0.589	0.328	1.030	0.064
Primary caregiver	0.383	0.222	0.666	0.001
Cerebrovascular Disease	0.264	0.028	1.126	0.076
Cardiac Arrhythmias	1.489	0.829	2.621	0.180
Alcohol Abuse	3.187	0.872	9.822	0.077
Depression	1.908	0.872	3.941	0.103
Pulse Pressure Std Dev 1yr	1.132	1.057	1.211	0.000
Acute MI 1yr	10.550	2.094	48.510	0.006
Cardiac or Vascular Event 1yr	2.514	1.441	4.360	0.001
Hgb Mean 7d to1yr	0.873	0.713	1.063	0.178
Hgb Slope 7dt o1yr	0.000	0.000	0.134	0.001
Pulse Mean 1yr	1.022	0.993	1.053	0.134
eGFR Std Dev 1yr	0.964	0.926	1.000	0.050
Days SinceTX First Max eGFR 1yr	0.997	0.994	1.000	0.047
Transplant LOS	1.053	0.963	1.128	0.198
Acute Banff Score Max 1yr	1.356	1.212	1,521 J Transplant 2017	<0.0001

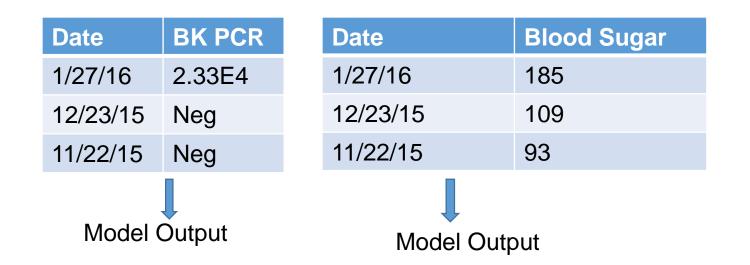
Effect of Layering Data Sources on Model Performance



Three Year Graft Loss ROC Curves


Three Year Graft Loss ROC Curves


Mutable factors associated with 1 & 3 year graft loss and mortality fall into 2 categories


Transplant associated risk (historically managed by transplant nephrology)

Non-Transplant associated risk (historically managed by primary care)

Model Deployment in The Clinic

Apric - Churt Cain Baskat Möchedale (2)	und Tools + Alecond Weeve	Contact Roview	+ Support + MUSC Know	nedge Bese 🟦 Uy To Date 🌾 Ar	emind Me 🚰XERO	PO 1/2 aPart - BLog Dut
	Incost Last	oston Note Precadora N.	Alergent Press	WIN MEDICARE	Proto	Referrer C. Search
POP Dates Edima PERA Nove MyChart Adam		Avoitori None Research None Call Prior Language Eng	Oxycodone Vancomicin Analo	leni Ova	Pt Popers Deptil.oc. None	

Kidney Tx Summary

PATIENT INFORMATION: "FICTICIOUS FRANK"

Latest banff grade: IIA Date: 9/14/2016 cg0 ci1 ct1.5 cv3 ah1 mm0 ti1 i0 t1 v1 g0.5 ptc1 c4d0

Post-tx readmission count: 1 Maximum acute banff grade in past year: IIB Date: 10/15/2015

DONOR INFORMATION AT TIME OF TRANSPLANT

 Age: 37
 Sex: M
 Race: Hispanic KDPI: 22
 Terminal SrCr: xx
 Weight: 237
 BMI: 29

 CMV: 027
 EBV: xx
 LD: Deceased Don or
 ECD: xxx
 DD: non-beating heart

 HLA Mismatches: 4
 CPRA: 10%
 CIT: 12 hr 23 min
 WIT: 12 min

ADDITIONAL PATIENT INFORMATION

Risk scores

1 year graft loss: 3.7% Date: 9/14/2016 3 year graft loss: Date: 3 year mortality: Date:

Calculated Information (up to 1 year ago if data available)

Maximum eGFR: 75 eGFR slope: 0.7 Systolic BP mean: 155 Pulse mean: 22 Tac mean: nn Tac SD: nn

Intermountain Experience

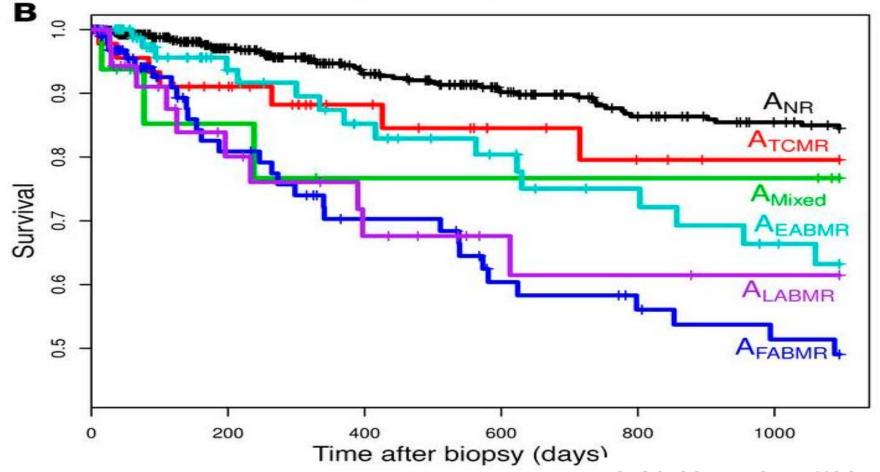
- Bringing it all together in the clinic
- Tools available: dd CF DNA, Molecular Microscope, Pharmacogenomic Panel
- Standardized cardiovascular evaluation using PET, Echo, Coronary calcium and a dedicated CV physician team
- Routine assessment of frailty and physical performance

RxMatch[¬] Comprehensive Report

Genetic Summary

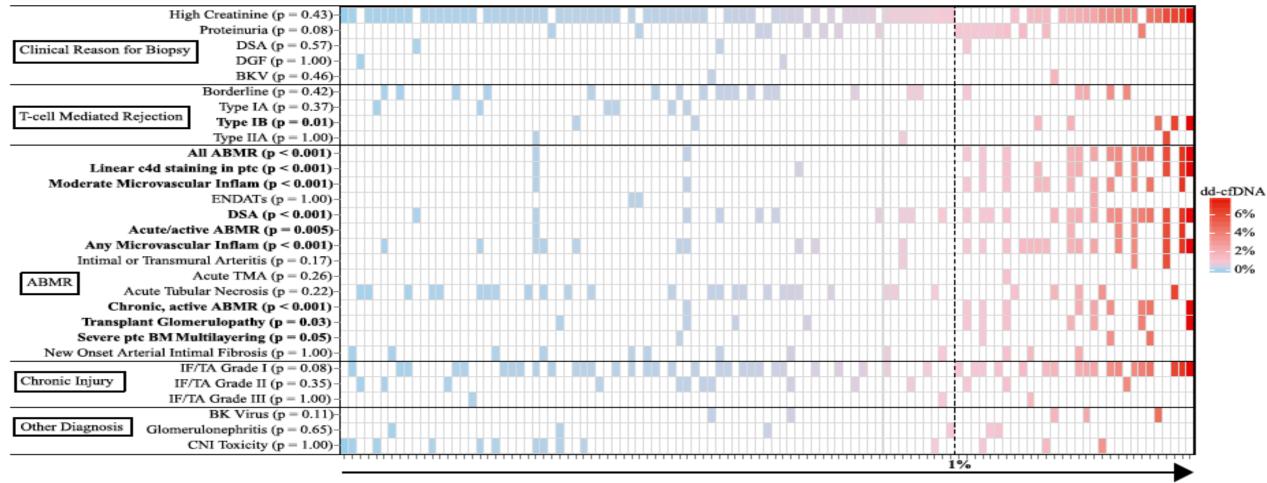
Gene	Result	Activity †
ADRA2A(C-1291G)	C C	Normal function
ANKK1	G A	Altered function
АроЕ	Not Tested	See ApoE Genotype Info.
COMT(Val158Met)	G A	Altered function
CYP2C19	*1 *1	Extensive metabolizer
CYP2C9	*1 *1	Extensive metabolizer
CYP2D6	*1 *1	Extensive metabolizer
CYP3A4	*1A *1A	Multiple statuses; see per-drug detail
СҮРЗА5	*1D *3A; or *1A *3C; or *1A *3A or *1D *3C	Intermediate metabolizer
CYP4F2	*1 *3	Uncertain function

RxMatch Comprehensive Report



Drug		Finding	Recommendation	Concern	Evidence
Immunosuppressants					
Cyclosporine (Gengraf, Neoral)	0	CYP3A4: Extensive metabolizer. Two alleles showing normal activity.	Typical response is expected; no additional therapeutic recommendations.		-
Sirolimus (Rapamune)	S	CYP3A4: Extensive metabolizer. Two alleles showing normal activity.	Typical response is expected; no additional therapeutic recommendations.		-
Tacrolimus (Prograf, Hecoria)		CYP3A5: One allele showing normal activity and one showing little or no activity.	Individuals with intermediate metabolizer status have lower dose-adjusted trough concentrations of tacrolimus; the resultant decreased concentrations may increase the probability of pharmacotherapy failure. Consider increasing the recommended starting dose by 1.5 to 2 times (with a total starting dose not exceeding 0.3 mg/kg/day). In liver transplant patients, donor genotype should be considered as well as the recipient's.	Efficacy	•

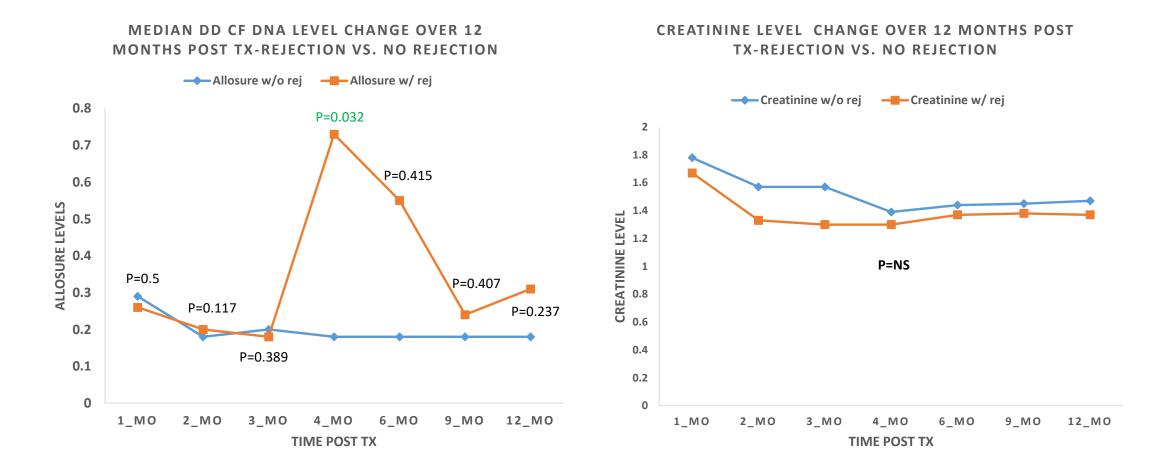
Therapeutic Class	Standard Precautions	Caution / Info	Change recommended
Depleting Agents			
Central Nervous System Agents	Dextromethorphan-Quinidine		
Cholinergic Agonists	Cevimeline		
Cholinesterase Inhibitors		Galantamine	
Contraceptives	Estrogen-containing oral contraceptives		
EGFR Inhibitors	Gefitinib		
Endocrine-Metabolic Agents		Eliglustat	
Hypnotics	Eszopiclone		
Immunosuppressants	Cyclosporine Sirolimus	Tacrolimus	
Muscle Relaxants	Carisoprodol		


Assessing rejection-related disease in kidney transplant biopsies based on archetypal analysis of molecular phenotypes

Jeff Reeve,^{1,2} Georg A. Böhmig,³ Farsad Eskandary,³ Gunilla Einecke,⁴ Carmen Lefaucheur,^{5,6} Alexandre Loupy,^{5,7} Philip F. Halloran,^{1,8} and the MMDx-Kidney study group⁹

insight.jci.org https://doi.org/10.1172/jci.insight.94197

Injury Markers...



Samples, sorted by dd-cfDNA levels (percentage), increasing from left to right

J Am Soc Nephrol 28: •••-, 2017

Cell Free DNA

Longitudinal dd-Cf DNA and Creatinine Changes over 12 Months Post Tx-Rejection vs No Rejection

Case Study

Case	Best Creatinine	Biopsy Trigger	Histology	Molecular Microscope	Anti-HLA Ab	Cf-DNA	Treatment	Non HLA Ab
34 yo Asian Indian male; ESRD secondary to SLE ; cPRA-99%; induction r-ATG 6mg/kg; CYP3A5 Intermediate metabolizer	1.43 mg/dL	Pre-existing DSA; surveillance at 4 weeks post Tx	Banff Suspicious ACR	Severe ABMR. No TCMR. Moderate AKI and minimal atrophy- fibrosis	Pre-existing DSA to DRB1 2500 MFI increased to 4900 MFI Denovo Ab to DQ2	0.69	Pulse steroids, IVIG, bortezomib, tocilizumab	Not tested
Repeat Testing	1.2 mg/dL	Surveillance Post Rx at 3 weeks	Banff Suspicious marked improvem ent	Mild early-stage ABMR. No TCMR. Moderate AKI with mild inflammation and minimal atrophy- fibrosis. Compared to the initial biopsy : overall improvement in ABMR features	DRB1 Ab decreased to 2400 MFI	1.1	Maintenance tac, MMF, Prednisone	Not Tested

Pure Molecular Interpretation (Results Summary)

Abnormal biopsy. Severe ABMR. No TCMR. Moderate AKI and minimal atrophy-fibrosis. Note: This sample is 100% medulla, which may affect	Percent
the readings, overestimating cg>0 probability, late ABMR (LABMR), and inflammation (Global Disturbance) scores.)	cortex ¹
Note: the Molecular Microscope® Diagnostic System cannot exclude primary glomerular diseases.	0%

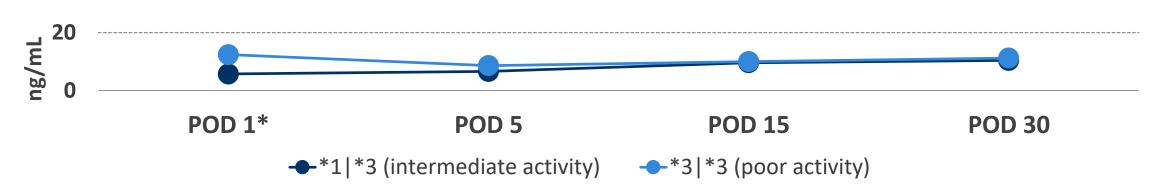
Result Details

Biopsy Rejection and Injury Scores

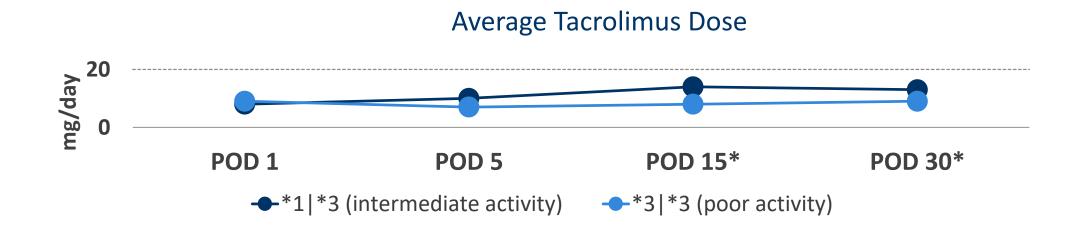
	Classifier / Gene Sets	Biopsy Score	Range of Values ²	Upper Limit of Normal ³	Interpretation
	Global Disturbance Score	4.68	-3.8 - 5.8	0.02	Extensive
Injury Scores	Acute Kidney Injury (AKI) Score	0.87	-0.6 - 1.6	0.61	Moderate
	Atrophy-Fibrosis Score	0.25	0 — 1	0.38	Minimal
	Rejection Score	0.48	0 — 1	0.30	Mild
Rejection Scores	T Cell-Mediated Rejection (TCMR) Score	0.08	0 — 1	0.10	Normal
	Antibody-Mediated Rejection (ABMR) Score	0.52	0 — 1	0.20	Severe

Molecular Microscope

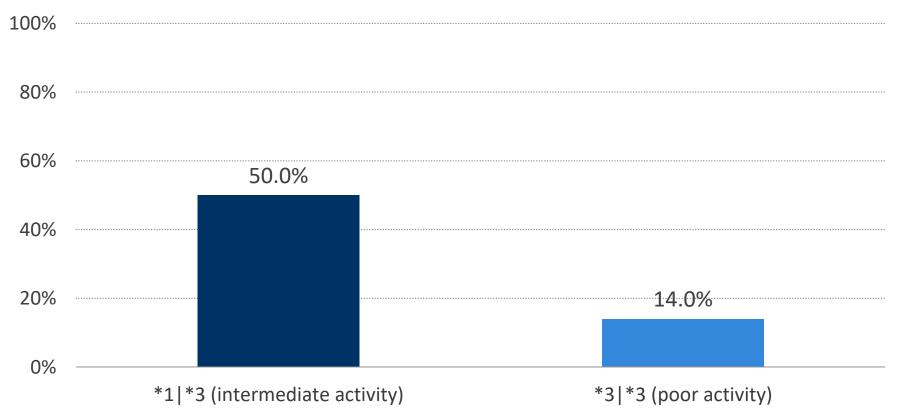
Pure Molecular Interpretation (Results Summary)


Abnormal biopsy. Mild early-stage ABMR. No TCMR. Moderate AKI with mild inflammation and minimal atrophy-fibrosis. Compared to the biopsy	Percent
of October 23rd 2018, there has been an improvement in ABMR features.	cortex ¹
Note: the Molecular Microscope® Diagnostic System cannot exclude primary glomerular diseases.	77%

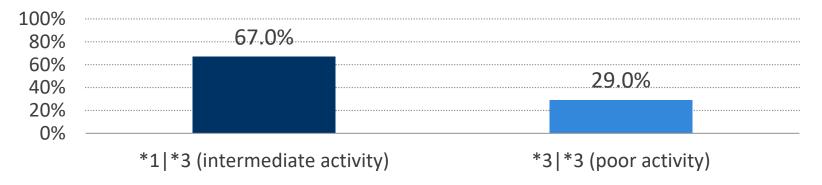
Result Details


Biopsy Rejection and Injury Scores

	Classifier / Gene Sets	Biopsy Score	Range of Values ²	Upper Limit of Normal ³	Interpretation
	Global Disturbance Score	-0.28	-3.8 - 5.8	0.02	Mild
Injury Scores	Acute Kidney Injury (AKI) Score	0.50	-0.6 - 1.6	0.61	Moderate
	Atrophy-Fibrosis Score	0.09	0 - 1	0.38	Minimal
	Rejection Score	0.39	0 - 1	0.30	Mild
Rejection Scores	T Cell-Mediated Rejection (TCMR) Score	0.03	0 - 1	0.10	Normal
	Antibody-Mediated Rejection (ABMR) Score	0.34	0 — 1	0.20	Mild


Pharmacogenomics

Average Tacrolimus Trough



Biopsy Proven Acute Rejection

Change in Drug Dosing or Choice

Recommended Pharmacotherapy Changes

- Tacrolimus
- Beta Blockers
- Changes in SSRI choice

The Path Ahead

Viewpoint

January 1/8, 2019

More▽

(**f**)

 \searrow

Humanizing Artificial Intelligence

Sonoo Thadaney Israni, MBA¹; Abraham Verghese, MD¹

» Author Affiliations | Article Information

JAMA. 2019;321(1):29-30. doi:10.1001/jama.2018.19398

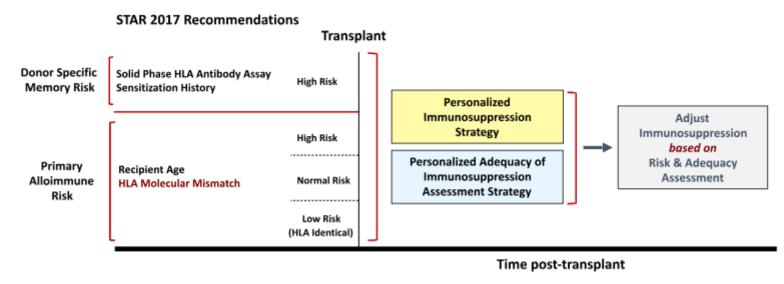
Osler : "It is more important to know what kind of patient has a disease rather than what disease a patient has"

Monitoring Jet Engines and the Health of People

JAMA December 11, 2018 Volume 320, Number 22

VIEWPOINT

Lionel Tarassenko, MA, DPhil University of Oxford, Oxford, United Kingdom.

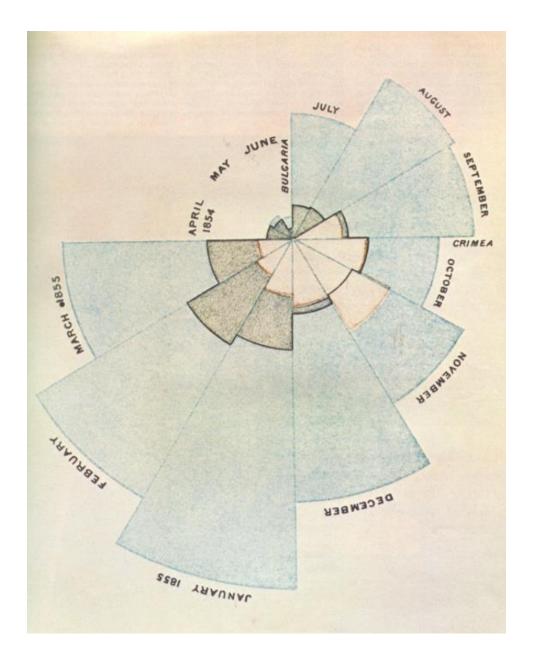

Eric J. Topol, MD Scripps Research Translational Institute, La Jolla, California. As with jet engines, the full potential of health monitoring for people will only be realized when *individualized* models underpin the monitoring algorithms. Received: 7 June 2018 Revised: 5 July 2018 Accepted: 10 July 2018

DOI: 10.1111/ajt.15027

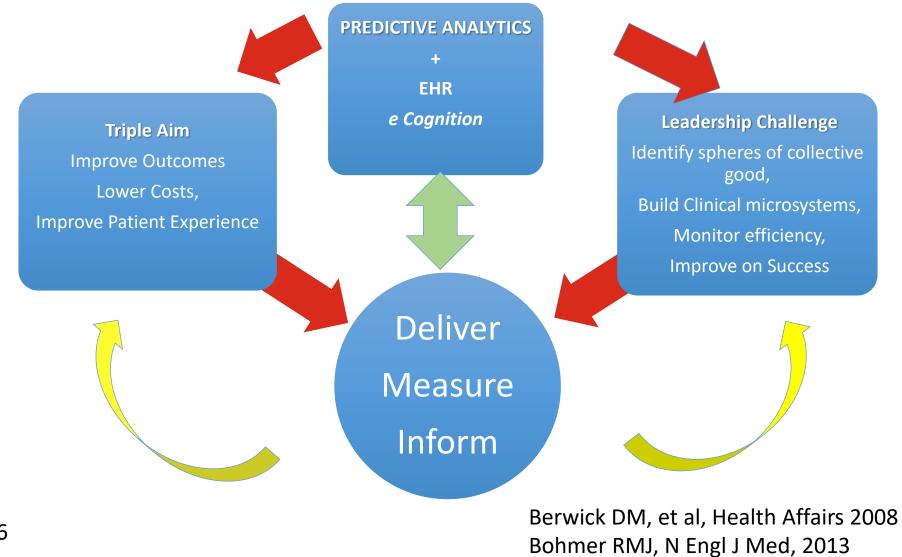
EDITORIAL

AJT

A call to action—The transplant recipient's expectation of precision in transplant medicine



PERSONAL VIEWPOINT


Expanding transplant outcomes research opportunities through the use of a common data model

Sylvia Cho, Sumit Mohan, Syed Ali Husain, Karthik Natarajan 🔀

First published: 24 April 2018 | https://doi.org/10.1111/ajt.14892 | Cited by: 1

LEARNING HEALTH SYSTEMS AND CARE DELIVERY PATHWAYS

©Srinivas 2016

"A good nockey player player plays where the puck is going to be."

Where we are going at Intermountain

70 percent of the cost of care of CKD and ESRD is locked in unmanaged comorbidity

Total Cost of Care and Per Member Per Month Costs need to be optimized

We are deploying a system of care that goes upstream of CKD and employs cognitive solutions in a learning platform

Teams driven by a predictive model that in full build will incorporate costs in real time

Теат

- David Taber, Pharm D
- Patrick Mauldin, PhD
- Jingwen Zhang, MS
- Zemin Su, MS
- Justin Marsden, MS
- William Moran, MD, MS
- John Long, MS
- David Northrup, MS
- Mark Daniels, MS
- Karthick Gourisankaran, MS
- Leslie Lenert, MD, MS
- Katie Reilly, BA
- Martha Sylvia, RN, MSN

IBM

- Haroon Anwar, MS
- Arun Tripathi, Ph.D.
- Salvatore Galascio, MS

- Brendan Fowkes
- Doug Surrett

OCIO: Frank Clark, Ph.D. (emeritus) Michael Caputo, MS, John Long, MS

Intermountain: Jake Krong Megan Fife Sanjiv Anand Donald Morris Li Dong Mike Phillips Ray Morales

Questions

Healing for life "

Thank You !!!