

The Force is in the cfDNA

Roy D. Bloom MD University of Pennsylvania

TRANSPLANT SUMMIT 2019

NO SIZE FITS ALL: Uncovering the Potential of Personalized Transplantation

FEBRUARY 21–23, 2019 • ARIZONA BILTMORE • PHOENIX, AZ

Disclosures

- Advisor: Veloxis, CSL Behring
- Royalties: UpToDate
- Research support: CareDx, Veloxis, Shire

• Nephrocentric presentation

Road Map

- What is donor-derived cell-free DNA?
- Why do we need it?
- What are we learning about it?
- What are its opportunities?
- How will donor-derived cell-free DNA be used in organ transplantation?

Contributors to Transplant Failure Non-immune Organ Immune Co-morbidities Transplant Organ Quality CVD • serum creatinine Recurrent dx Cancer • proteinuria Infection Biopsy • liver enzymes **BK** virus • PFTs • echo Rejection - nonadherence - under-dosing Drug levels Biopsy Graft Loss Death

Limitations of Current Surveillance

Serial serum creatinine levels:

Unmet need in kidney transplantation

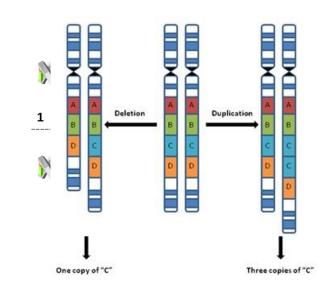
- Non-invasive accurate diagnostic test
- Safe, readily repeatable
- Informative
- Lead time vs to standard of care

risk to patient, inconvenience,

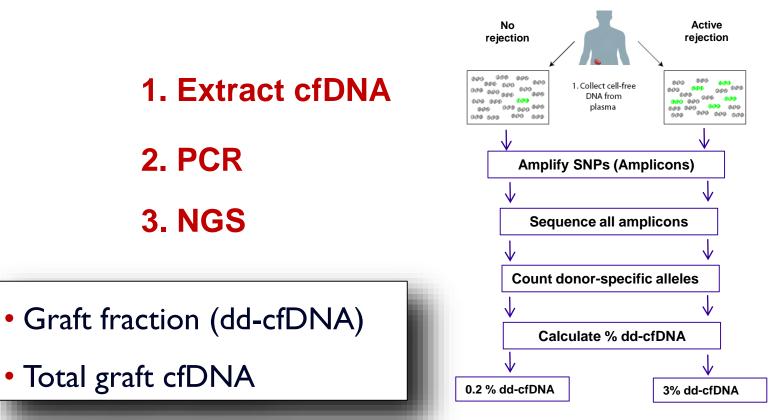
- subjective interpretation
- not validated to improve outcomes

More Accurate In diagnosis of Active Rejection

it?


nic DNA in body fluids that

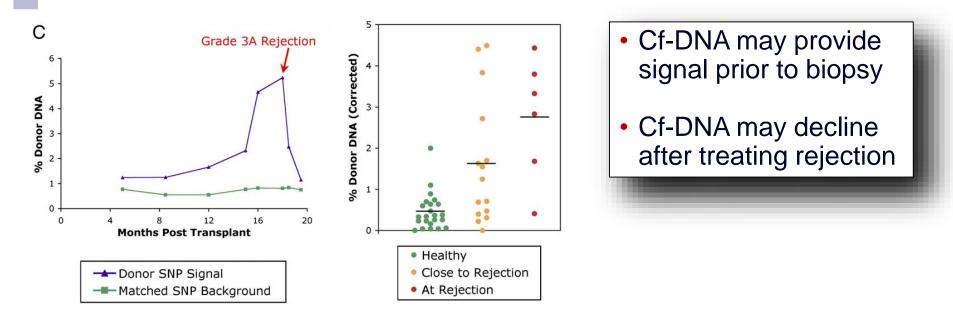
nucleosomal units of bases


Cell-free DNA in blood and plasma

How it Works

- Initial strategies
 - Interrogate both donor and recipient
 - Gender mismatched pairs
- Contemporary strategies
 - Population genomics
 - SNPs that have high allelic frequency
 - Homozygous in donor and recipient but differ
 - Distributed evenly in population
 - Copy number variation (CNV)

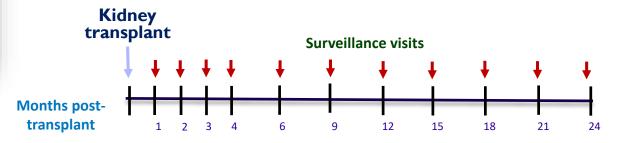
How it Works

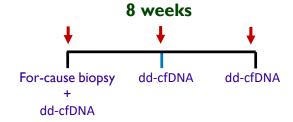

Modified from Snyder, PNAS 2011

Universal noninvasive detection of solid organ transplant rejection

Thomas M. Snyder^{a,b}, Kiran K. Khush^c, Hannah A. Valantine^{c,1}, and Stephen R. Quake^{a,b,1}

^aThe Howard Hughes Medical Institute and ^bDepartments of Applied Physics and Bioengineering, Stanford University, Stanford, CA 94305; and ^cDivision of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305

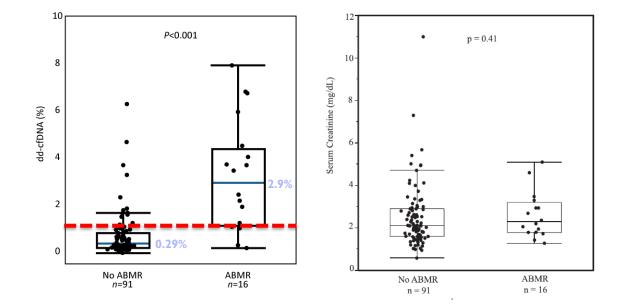

Edited* by Leonard A. Herzenberg, Stanford University, Stanford, CA, and approved February 24, 2011 (received for review September 15, 2010)


Dd-cfDNA and Rejection: **DART**

 I4 centers, n=384, prospective observational study, 2 scenarios:

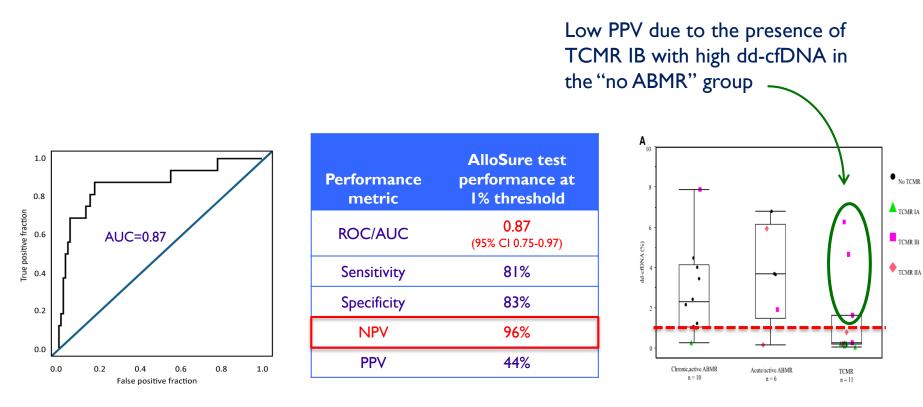
1. Newly transplanted recipients with dd-cfDNA tests at 11 surveillance visits

2. Clinically indicated biopsy with dd-cfDNA tests at time of biopsy and 1-2 follow-up visits



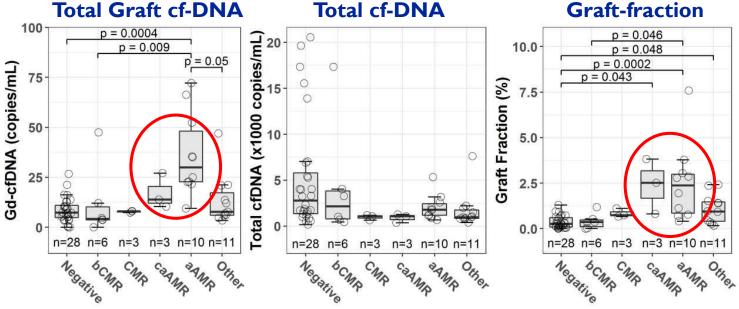
Rejection based on Banff 2013 criteria

*Donor-Derived Cell-Free DNA in Blood for Diagnosing Acute Rejection in Kidney Transplant Recipients


Bloom RD et al, J Am Soc Nephrol. 2017

Dd-cfDNA is Sensitive for ABMR; Serum Creatinine is not

Bloom RD et al. Cell-free DNA and active rejection in kidney allografts. J Am Soc Nephrol. 2017. doi:10.1681/ASN.2016091034.


Strong NPV for ABMR

Bloom RD et al. Cell-free DNA and active rejection in kidney allografts. J Am Soc Nephrol. 2017. doi:10.1681/ASN.2016091034.

Higher dd-cfDNA With ABMR Other Quantification Methods

• n=55, for-cause bx

Biopsy Result

bCMR=borderline cell-mediated rejection; CMR=cell-mediated rejection ; aAMR: acute antibody mediated rejection; caAMR=chronic active antibody mediated rejection; gd-cfDNA=graft-derived cell-free DNA; Graft Fraction=graft derived cell-free DNA/total cell-free DNA

Dd-cfDNA and **ABMR**

ABMR based on DSA

Study	Banff Criteria	Diagnostic cut-off (%)	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
Bloom, 2017	2013	1	81	83	44	96
Jordan, 2018 (with DSA)	2013	1	81	82	81	83
Whitlam, 2018	2013	0.75	85	75	48	95
Huang, 2019	2013	0.74	100	72	69	100
Sigdel, 2019	2017	1				

DOI: 10.1111/ajt.14625

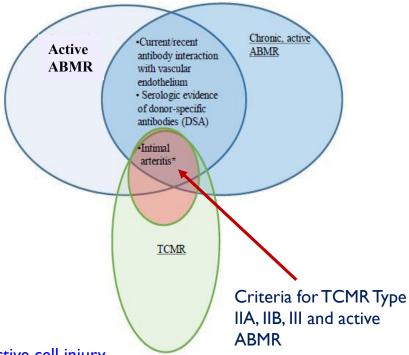
AJT

MEETING REPORT

The Banff 2017 Kidney Meeting Report: Revised diagnostic criteria for chronic active T cell-mediated rejection, antibodymediated rejection, and prospects for integrative endpoints for next-generation clinical trials

Challenges with ABMR

DOI: 10.1111/ajt.14625


AJT

MEETING REPORT

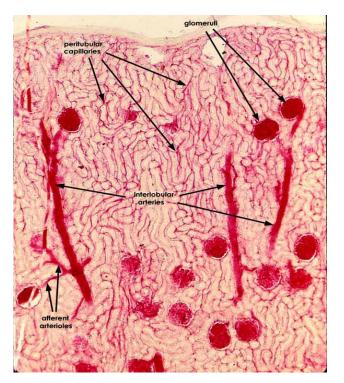
The Banff 2017 Kidney Meeting Report: Revised diagnostic criteria for chronic active T cell-mediated rejection, antibodymediated rejection, and prospects for integrative endpoints for next-generation clinical trials

- Overlap in microvascular injury phenotypes
- Detectable DSA not required
- Molecular alternatives to DSA acceptable
 - "If thoroughly validated"
 - Tests have limitations
 - Not yet approved by regulators single common histological criteria suggesting active cell injury

Dd-cfDNA and **ABMR**

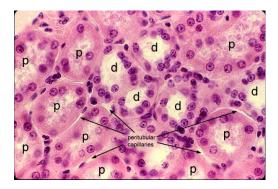
Dd-cfDNA and **ABMR**

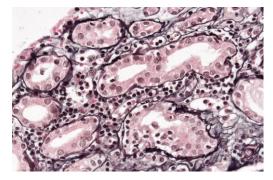
Huang et al, 2019


Whether Dd-cfDNA is considered a valid marker of

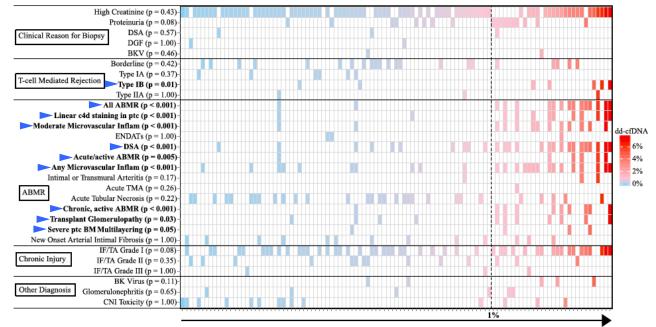
endothelial injury/ABMR has major implications

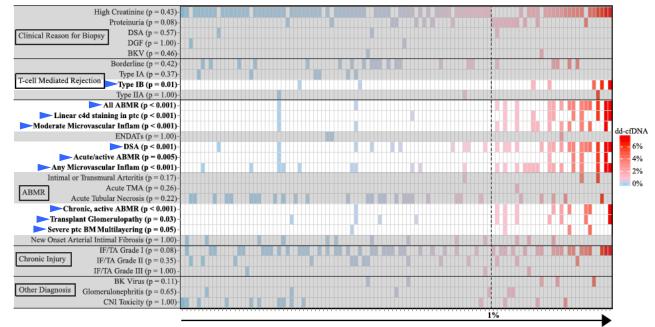
_	


Why Does dd-cfDNA Better Discriminate ABMR than TCMR

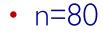

 ABMR: Direct proximity of damaged endothelial cells to circulation following microvascular injury

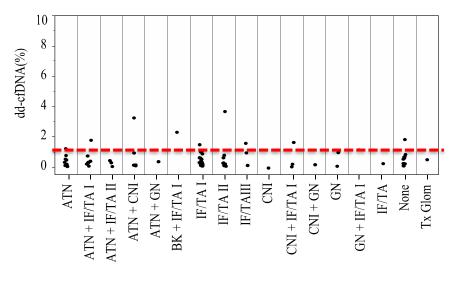
Why Does dd-cfDNA Better Discriminate ABMR than TCMR


- ABMR: Direct proximity of damaged endothelial cells to circulation following microvascular injury
- TCMR: tubular and interstitial injury predominate (tubulointerstitial compartment)


http://www.siumed.edu/~dking2/crr/rnguide.htm#rnii

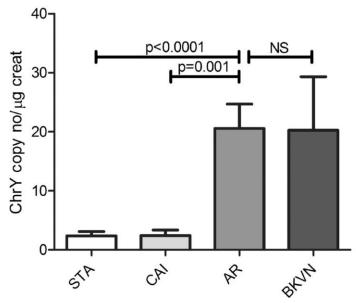
Correlation of Banff Elementary Lesions with dd-cfDNA


Samples, sorted by dd-cfDNA levels (percentage), increasing from left to right


Correlation of Banff Elementary Lesions with dd-cfDNA

Samples, sorted by dd-cfDNA levels (percentage), increasing from left to right

Cell-free DNA and Diagnoses Other Than Rejection


• BK viremia, n= 14

Biopsy	n	Median dd- cfDNA (%)		
No rejection	7	0.58	0.29-1.77	
Rejection	7	3.38	1.22-4.65	

- More info needed
 - BKVN
 - DSA

Urinary Cell-Free DNA

 n= 63, chromosome Y specific dd-cfDNA

COMMUNICATIONS

DOI: 10.1038/s41467-018-04745-0 OPEN

Urinary cell-free DNA is a versatile analyte for monitoring infections of the urinary tract

Philip Burnham¹, Darshana Dadhania^{2,3}, Michael Heyang¹, Fanny Chen¹, Lars F. Westblade^{4,5}, Manikkam Suthanthiran^{2,3}, John Richard Lee^{2,3} & Iwijn De Vlaminck¹

- Microbiome
- Infectome
 - Growth rates
 - Antibiotic resistome profiling
 - Host response
 - Monitoring for infection
- dd-cfDNA

ARTICLE

Many Knowledge Gaps

- Performance vs DSA?
- Discrimination of diagnoses other than active rejection?
- Optimal use and testing frequency?
 - Screening
 - In conjunction with/instead of DSA
 - With for-cause and/or protocol biopsy
- Define meaningful changes/implications
- How do different methods compare?
- Use with other biomarkers?

Conclusion

- Novel diagnostic in transplantation
- Versatility in blood and urine
- Early studies show immense promise
 ABMR>TCMR
- Opportunity to

- Redefine how we manage transplant recipients

• SHARKS, THIS IS A KEEPER, CARPE DIEM

