Live Kidney Donor Risk: Big Data and the New Calculators

Dorry Segev, MD, PhD
Professor of Surgery and Epidemiology
Associate Vice Chair, Department of Surgery
Director, Epidemiology Research Group in Organ Transplantation
Johns Hopkins University
"The only remaining problem was the ethical decision concerning the removal of a healthy organ from a normal person for the benefit of someone else. For the first time in medical history a normal healthy person was to be subjected to a major surgical operation not for his own benefit."

Joseph Murray, Nobel Lecture, 12/8/90
1965

Copyright AST 2016
Questions We Want to Answer

• *Baseline risk*
 (risk individual will have if *doesn't* donate)

• *Absolute risk*
 (total risk individual faces if donates)

• *Attributable risk*
 (extra risk individual faces if *does* donate)

• By race, age, sex, BMI, insurance, SES, etc?
Questions We Can Answer

• *Baseline risk*
 Risk in “healthy non-donors”

• *Absolute risk*
 Risk in donors

• *Attributable risk*
 Difference between above two
Studying ESRD

• Rare event
 – Require thousands of donors to see one event
 – Require tens of thousands to estimate the risk with any degree of confidence, for any subgroups
 – Require a non-self-reported source
 (Most centers lose touch with donors)
 – Require national representation
 (Low-volume centers, various demographics)
Ibahim/Matas NEJM 2009

- 3698 living donors single center 1963-2007; 99% Caucasian
- ESRD ascertainment through donor followup
- 11 cases of ESRD (1.8 per 10,000 person-years); 3 were non-Caucasian
- All donors with ESRD were biologically related to recipient
Mjoen et al, Kidney Int 2014

• 1901 living kidney donors 1963-2007 (single center performing all donations in Norway)
• 368 marginal donors excluded (hypertension, BMI>30, eGFR<70, macroalbuminuria, age>70)
• Followup through 2010
• Controls: Norwegian cohort enrolled 1984-87; included only self-reported health as "good" or "excellent"; excluded obese, SBP>140, DM, cardiovascular disease
Mjoen et al, Kidney Int 2014

- Nine cases of ESRD in LD (3.0 per 10,000 py); all biologically related to recipient

<table>
<thead>
<tr>
<th>Kidney donation</th>
<th>11.38 (4.37–29.63, (P < 0.001))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion year</td>
<td>0.90 (0.82–0.99, (P = 0.03))</td>
</tr>
<tr>
<td>Age, years</td>
<td>1.02 (0.99–1.05, (P = 0.13))</td>
</tr>
<tr>
<td>Male</td>
<td>0.90 (0.43–1.88, (P = 0.77))</td>
</tr>
<tr>
<td>Systolic BP</td>
<td>1.01 (1.00–1.06, (P = 0.03))</td>
</tr>
<tr>
<td>Smoking</td>
<td>1.19 (0.51–2.76, (P = 0.68))</td>
</tr>
<tr>
<td>BMI</td>
<td>1.13 (0.96–1.32, (P = 0.14))</td>
</tr>
</tbody>
</table>
OPTN Live Donor Registry

• Every single live donor in the US since 1988
• Currently N>112,000
• Advantages: massive, unbiased
• Disadvantages:
 – Incomplete, limited-term outcome capture
 – But… SSN captured since 1994 – linkage
• Medicare (CMS)
• Social Security (SSDMF)
NHANES-III

- Interviews, physical examination, and laboratory tests of 20,024 adults and 13,000 children administered by medical personnel
- Very detailed initial visits
- Can identify “healthy non-donors”
- Cross-sectional: no follow-up (except linkage)
- Medicare (CMS)
- Social Security (SSDMF)
Live Kidney Donors: Mortality

- Size (N=80,347 -- previous study was 3700 donors: Ibrahim NEJM)
 - Powered for narrow confidence interval
 - Powered for subgroup estimates
- Generalizability (all U.S. centers represented, not just large-volume academic centers)
- Diversity (previous study was 98% Caucasian, national cohort was 27% non-Caucasian)

Segev, JAMA, 2010
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Subgroup</th>
<th>90-day Mortality Rate</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td></td>
<td>3.1 (2.0-4.6) per 10,000</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>18-39</td>
<td>3.0 (1.6-5.3)</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td>3.7 (1.7-7.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50-59</td>
<td>1.5 (0.2-5.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>=60</td>
<td>6.6 (0.8-23.9)**</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>Men</td>
<td>5.1 (3.0-8.2)</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>1.7 (0.7-3.4)</td>
<td></td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td>Caucasian</td>
<td>2.6 (1.4-4.2)</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>African American</td>
<td>7.6 (3.3-15.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hispanic</td>
<td>2.0 (0.2-7.3)</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>No</td>
<td>1.3 (0.4-3.4)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>36.7 (4.4-132.6)**</td>
<td></td>
</tr>
</tbody>
</table>

Segev, JAMA, 2010

Copyright AST 2016
Matched Controls
Live Donors

Segev, JAMA, 2010
Live Kidney Donors: ESRD

- Size (N=96,217)
 - Powered for narrow confidence interval
 - Powered for subgroup estimates
- Generalizability (all U.S. centers)
- Racial Diversity
- Proper comparison group
 - All previous studies had compared with “general population”
p=0.2

Muzaale/Segev, JAMA, 2014
Trend $p=0.9$
At 15 years post-donation
Donors: 30.8 per 10,000 [95% CI 24.3-38.5]
Healthy Nondonors: 3.9 per 10,000 [0.8-8.9]
Muzaale/Segev, JAMA, 2014
Attributable Risk

• “Extra risk” at 15y post-donation
 – Black:
 • $74.7 \ [47.8-105.8] - 23.9 \ [1.6-62.4] = 50.8 \text{ per 10,000}$
 – Hispanic:
 • $32.6 \ [17.9-59.1] - 6.7 \ [0.0-15.0] = 25.9 \text{ per 10,000}$
 – White:
 • $22.7 \ [15.6-30.1]$

Muzaale/Segev, JAMA, 2014
Questions We Want to Answer

• *Baseline risk*
 (risk individual will have if doesn't donate)

• *Absolute risk*
 (total risk individual faces if donates)

• *Attributable risk*
 (extra risk individual faces if does donate)

• By race, age, sex, BMI, insurance, SES, etc?
Bigger Data
Kidney-Failure Risk Projection for the Living Kidney-Donor Candidate

CKD Prognosis Consortium

Grams et al, NEJM, 2016
- ACR 4 mg/g
- SBP 120 mmHg
- No diabetes
- No hypertension meds
- Non-smoker
- BMI 26

<table>
<thead>
<tr>
<th>Age</th>
<th>Base-case eGFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>114</td>
</tr>
<tr>
<td>30</td>
<td>106</td>
</tr>
<tr>
<td>40</td>
<td>98</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
</tr>
<tr>
<td>60</td>
<td>82</td>
</tr>
<tr>
<td>70</td>
<td>74</td>
</tr>
<tr>
<td>80</td>
<td>66</td>
</tr>
</tbody>
</table>
A 15-Year Projected Incidence of ESRD

- Black men
- Black women
- White men
- White women

Incidence (%)

Age (yr)
B Lifetime Projected Incidence of ESRD

- Black men
- Black women
- White men
- White women

Incidence (%) vs. Age (yr)

Copyright AST 2016
Base Case

![Bar charts showing lifetime incidence by age and gender for Black Men, Black Women, White Men, and White Women.](image)

Copyright AST 2016
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Hazard Ratio (95% CI)</th>
<th>β±SE</th>
<th>Population Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>NHANES</td>
</tr>
<tr>
<td>eGFR per decrease of 15 mL/min/1.73 m²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><60 mL/min/1.73 m²</td>
<td>6.61 (4.87–8.96)</td>
<td>1.89±0.16</td>
<td>12.82</td>
</tr>
<tr>
<td>60–89 mL/min/1.73 m²</td>
<td>1.63 (1.53–1.74)</td>
<td>0.49±0.03</td>
<td>1.05</td>
</tr>
<tr>
<td>90–119 mL/min/1.73 m²</td>
<td>1.02 (0.85–1.23)</td>
<td>0.02±0.09</td>
<td>0.83</td>
</tr>
<tr>
<td>≥120 mL/min/1.73 m²</td>
<td>0.79 (0.56–1.10)</td>
<td>−0.24±0.17</td>
<td>1.18</td>
</tr>
<tr>
<td>Systolic blood pressure, per increase of 20 mm Hg</td>
<td>1.42 (1.27–1.58)</td>
<td>0.35±0.06</td>
<td>2.90</td>
</tr>
<tr>
<td>Antihypertensive drug use</td>
<td>1.35 (1.01–1.82)</td>
<td>0.30±0.15</td>
<td>0.31</td>
</tr>
<tr>
<td>Noninsulin-dependent diabetes mellitus</td>
<td>3.01 (1.91–4.74)</td>
<td>1.10±0.23</td>
<td>0.77</td>
</tr>
<tr>
<td>Body-mass index, per 5-point increase</td>
<td></td>
<td></td>
<td>0.98</td>
</tr>
<tr>
<td>≤30</td>
<td>(0.81–1.17)</td>
<td></td>
<td>(1.11–5.21)</td>
</tr>
<tr>
<td>>30</td>
<td>1.16 (1.04–1.29)</td>
<td>0.15±0.05</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>(0.40–2.24)</td>
<td></td>
<td>(0.95–1.79)</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Former smoker</td>
<td>1.45 (1.23–1.71)</td>
<td>0.37±0.08</td>
<td>1.98</td>
</tr>
<tr>
<td>Current smoker</td>
<td>1.76 (1.29–2.41)</td>
<td>0.57±0.16</td>
<td>4.44</td>
</tr>
<tr>
<td>Urinary albumin-to-creatinine ratio, per increase of 10x</td>
<td>2.94 (0.99–8.75)</td>
<td>1.08±0.56</td>
<td>5.48</td>
</tr>
<tr>
<td></td>
<td>(2.37–12.71)</td>
<td></td>
<td>(1.26–2.56)</td>
</tr>
</tbody>
</table>
EgFR

Black Men

Black Women

White Men

White Women

Copyright AST 2016
NIDDM

Black Men

Black Women

White Men

White Women

Copyright AST 2016
Millions of healthy/CKD patients
120,000+ actual donors

ESRD Risk Tool for Kidney Donor Candidates

Projected Incidence of End-Stage Renal Disease:

<table>
<thead>
<tr>
<th></th>
<th>Pre-Donation 15-Year*</th>
<th>Pre-Donation Lifetime*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04%</td>
<td></td>
<td>0.30%</td>
</tr>
<tr>
<td>Post-Donation 15-Year**</td>
<td></td>
<td>Post-Donation Lifetime**</td>
</tr>
<tr>
<td>?</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>

blue: < 1%, green: 1-2%, yellow: 2-3%, orange: 3-5%, red: >5%

The pre-donation risks represent projections if a person does not donate a kidney. Details about estimating post-donation risk are provided below.

Patient Characteristics:

- **Age (18-89yrs)**: 40
- **Gender**: Female
- **Race (White or Black)**: White
- **eGFR (mL/min/1.73m²)**: 90
- **Systolic Blood Pressure (mmHg)**: 120
- **Hypertension Medication**: No Medication
- **BMI (kg/m²)**: 25
- **Non-Insulin Dependent Diabetes**: No Diabetes
- **Urine Albumin to Creatinine (mg/g)**: click on units to change between mg/g and mg/mmol
- **Smoking History**: Non-Smoker

transplantmodels.com/esrdrisk
Dialysis-to-Listing

Donors

Nondonors

p<0.001

Months

0 24 48 72 96 120 144

0.0 0.2 0.4 0.6 0.8 1.0

99 32 17 10 3 2 2
495 195 103 37 16 8 1

Copyright AST 2016
Transplant-to-Graft Failure

Donors

Nondonors

p=0.7

at Risk

<table>
<thead>
<tr>
<th></th>
<th>Donors</th>
<th>Nondonors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>54</td>
<td>270</td>
</tr>
<tr>
<td>24</td>
<td>46</td>
<td>220</td>
</tr>
<tr>
<td>48</td>
<td>28</td>
<td>151</td>
</tr>
<tr>
<td>72</td>
<td>15</td>
<td>84</td>
</tr>
<tr>
<td>96</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>120</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>144</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Copyright AST 2016
Death–Censored Graft Loss, %

Donor Developed ESRD
Donor Did Not Develop ESRD

p < .001

Years

0 5 10 15 20

at Risk

257 164 88 30 15
955 739 500 228 107

Copyright AST 2016
Live Donor KDPI

<table>
<thead>
<tr>
<th>Donor characteristic</th>
<th>aHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD: Age per year (over age 50)</td>
<td>1.02</td>
</tr>
<tr>
<td>LD: eGFR (per 10 units)</td>
<td>0.58</td>
</tr>
<tr>
<td>LD: BMI (per 10 units)</td>
<td>1.01</td>
</tr>
<tr>
<td>LD: Male donor to male recipient</td>
<td>0.75</td>
</tr>
<tr>
<td>LD: Black race</td>
<td>1.15</td>
</tr>
<tr>
<td>LD: ABO incompatible</td>
<td>1.03</td>
</tr>
<tr>
<td>LD: History of cigarette use</td>
<td>1.09</td>
</tr>
<tr>
<td>LD: Unrelated to recipient</td>
<td>0.84</td>
</tr>
<tr>
<td>LD: # HLA-B mismatches</td>
<td>1.03</td>
</tr>
<tr>
<td>LD: # HLA-DR mismatches</td>
<td>1.04</td>
</tr>
</tbody>
</table>

Adjusted for recipient characteristics. All coefficients p<0.05
Distribution of LKDPI

![Histogram of LKDPI distribution with two lines: LD KDPI and DD KDPI.](chart)
Conclusions

• Donor risk of death is very low (3:10,000) and there is no attributable risk beyond the operation at up to 12 years
• Donor risk of ESRD is very low (30:10,000) and there is attributable risk, which varies
• Baseline lifetime risk has be estimated from huge CKD populations
• Working on absolute/attributable lifetime risk
Implications

• We currently allow individuals to donate who have a very wide range of ESRD risk
• We currently decline potential donors who have conditions associated with a very wide range of ESRD risk
• We currently accept donors who have much higher risks than donors who we decline
• A new acceptable risk paradigm is coming
CKD-Prognosis Consortium

General Population Cohorts

Aichi
Hiroshi Yatsuya
Kentaro Yamashita
Hideaki Toyoshima
Koji Tamakoshi

AKDN:
Marcello Tonelli
Brenda Hemmelgarn
Matthew James
Tanvir C Turin

ARIC:
Josef Coresh
Kunihiro Matsushita
Morgan Grams
Yingying Sang

AusDiab:
Robert C Atkins
Kevan R Polkinghorne
Steven Chadban

Beaver Dam:
Anoop Shankar
Ronald Klein
Barbara KE Klein
Kristine E Lee

Beijing:
HaiYan Wang
Fang Wang
Luxia Zhang
Li Zuo

CHS:
Michael Shlipak
Carmen Peralta
Ronit Katz

CIRCS:
Hiroyasu Iso
Akihiko Kitamura
Tetsuya Ohira
Kazumasa Yamagishi

COBRA:
Tazeen Jafar
Muhammad Islam
Juanita Hatcher
Neil Poulter
Nish Chaturvedi

ESTHER:
Dietrich Rothenbacher
Hermann Brenner
Heiko Müller
Ben Schöttker

Framingham:
Caroline S Fox
Shih-Jen Hwang
James B Meigs
Ashish Uphadhy

Gubbio:
Massimo Cirillo

HUNT:
Stein Hallan
Knut Aasarød
Cecilia M Øien
Marie Radtke

Ibaraki:
Fujiko Irie
Hiroyasu Iso
Toshimi Sainench
Kazumasa Yamagishi

KSHS:
Eliseo Guallar
Seungho Ryu
Yoosoo Chang
Juhee Cho
Hocheol Shin

Maccabi:
Gabriel Chodick
Varda Shalev
Yair C Birnbaum
Anat Bet-Or

MESA:
Michael Shlipak
Mark J Sarnak
Carmen Peralta
Ronit Katz
Holly J Kramer

MRC Older People:
Paul Roderick
Dorothea Nitsch
Astrid Fletcher
Christopher Bulpitt

NHANES III:
Brad Astor
Josef Coresh
Kunihiro Matsushita

Ohasama:
Takayoshi Ohkubo
Hirohito Metoki
Masaaki Nakayama
Masahiro Kikuya
Yutaka Imai

Okinawa 83 & 93:
Kunitoshi Iseki

Ontario ICES-KDT:
Amit Garg
Eric McArthur
Gihad Nesrallah
Joseph Kim

PREVEND:
Ron T Gansevoort
Paul E de Jong
Bakhtawar K Mahmoodi
Hans Hillege

Rancho Bernardo:
Simerjot K Jassal
Elizabeth Barrett-Connor
Jaclyn Bergstrom

REGARDS:
David G Warnock
Paul Muntner
Suzanne Judd
William M McClellan

Severance:
Sun Ha Jee
Heejin Kimm
Jaeseong Jo
Yejin Mok
Eunmi Choi

Taiwan:
Chi-Pang Wen
Sung-Feng Wen
Chwen-Keng Tsao
Min-Kuang Tsai

ULSAM:
Johan Årnlöv
Lars Lannfelt
Anders Larsson

Ibaraki:

KSHS:

Torino:

Beaver Dam:

KSHS:

NHANES III:

ULSAM:

Beaver Dam:

KSHS:

NHANES III:

ULSAM:
High Risk Cohorts

ADVANCE:
- Mark Woodward
- John Chalmers
- Stephen MacMahon
- Hisatomi Arima

AKDN ACR:
- Marcello Tonelli
- Brenda Hemmelgarn
- Aminu Bello
- Matthew James

CARE:
- Marcello Tonelli
- Frank Sacks
- Gary Curhan

KEEP:
- Allan J Collins
- Joseph A Vassalotti
- Suying Li
- Shu-Cheng Chen

KP Hawaii:
- Brian J Lee

MRFIT:
- Areef Ishani
- James Neaton

NZDCS:
- C Raina Elley
- Tim Kenealy
- Simon Moyes
- John Collins
- Paul Drury

Pima Indian:
- Robert G Nelson
- William C Knowler

ZODIAC:
- Henk J Bilo
- Hanneke Joosten
- Nanne Kleefstra
- Klaas H Groenier
- Iefke Drion

AASK:
- Jackson Wright
- Lawrence Appel
- Tom Greene
- Brad C Astor

British Columbia CKD:
- Adeera Levin
- Ogjenka Djurdjev

CCF:
- Sankar Navaneethan
- Joseph Nally
- Jesse Schold

CRIB:
- David C Wheeler
- Martin J Landray
- Jonathan N Townend
- Jonathan Emberson

GCKD:
- Kai-Uwe Eckardt
- Anna Kottgen
- Florian Kronenberg
- Stephanie Tilze

Geisinger:
- Robert Perkins
- H Les Kirchner

GLOMMS 1:
- Corri Black
- Angharad Marks
- Nicholas Fluck
- Gordon Prescott

Gonryo CKD:
- Sadayoshi Ito
- Mariko Miyazaki
- Masaaki Nakayama
- Gen Yamada

KP Northwest:
- David H Smith
- Eric S Johnson
- Micah L Thorp
- Jessica Weinstein

MASTERPLAN:
- Jack F Wetzel
- Peter J Blankestijn
- Arjan D van Zuijlen

MDRD:
- Mark Sarnak
- Andrew S Levey
- Lesley Inker
- Vandana Menon

MMKD:
- Florian Kronenberg
- Barbara Kollerits
- Eberhard Ritz

NephroTest:
- Marc Froissart
- Benedicte Stengel
- M. Metzger
- JP Haymann
- P Houllier
- M. Flamant

RENAAL:
- Hiddo J Lambers Heerspink
- Barry Brenner
- Dick de Zeeuw

SRR-CKD:
- Marie Evans
- Maria Stendahl

STENO CKD:
- Peter Rossing
- Hans-Henrik Parving

CKD Prognosis Consortium

High Risk Cohorts

NZDCS: C Raina Elley, Tim Kenealy, Simon Moyes, John Collins, Paul Drury

Pima Indian: Robert G Nelson, William C Knowler

ZODIAC: Henk J Bilo, Hanneke Joosten, Nanne Kleefstra, Klaas H Groenier, Iefke Drion

AASK: Jackson Wright, Lawrence Appel, Tom Greene, Brad C Astor

British Columbia CKD: Adeera Levin, Ogjenka Djurdjev

CCF: Sankar Navaneethan, Joseph Nally, Jesse Schold

CRIB: David C Wheeler, Martin J Landray, Jonathan N Townend, Jonathan Emberson

GCKD: Kai-Uwe Eckardt, Anna Kottgen, Florian Kronenberg, Stephanie Tilze

Geisinger: Robert Perkins, H Les Kirchner

GLOMMS 1: Corri Black, Angharad Marks, Nicholas Fluck, Gordon Prescott

Gonryo CKD: Sadayoshi Ito, Mariko Miyazaki, Masaaki Nakayama, Gen Yamada

KP Northwest: David H Smith, Eric S Johnson, Micah L Thorp, Jessica Weinstein

MASTERPLAN: Jack F Wetzel, Peter J Blankestijn, Arjan D van Zuijlen

MDRD: Mark Sarnak, Andrew S Levey, Lesley Inker, Vandana Menon

MMKD: Florian Kronenberg, Barbara Kollerits, Eberhard Ritz

NephroTest: Marc Froissart, Benedicte Stengel, M. Metzger, JP Haymann, P Houllier, M. Flamant

RENAAL: Hiddo J Lambers Heerspink, Barry Brenner, Dick de Zeeuw

SRR-CKD: Marie Evans, Maria Stendahl

STENO CKD: Peter Rossing, Hans-Henrik Parving

Copyright AST 2016
Epidemiology Research Group in Organ Transplantation (D Segev, Director)

Core Research Group

Medicine/Surgery
- Morgan Grams, MD PhD
 Nephrology Faculty; K08
- Christine Durand, MD
 ID Faculty; R01 Pending
- Rebecca Craig-Schapiro, MD
 Surgery Resident
- Jackie Garonzik-Wang, MD PhD
 Surgery Resident; PhD Graduate (KL2)
- Elizabeth King, MD
 Surgery Resident; PhD Student (F32)
- Babak Orandi, MD PhD MSc
 Surgery Resident; PhD Graduate (F32)
- Kyle Van Arendonk, MD PhD
 Surgery Resident; PhD Graduate (KL2)

Epidemiology/Biostatistics
- Allan Massie, PhD
 Epidemiology Faculty (K01 pending)
- Mara McAdams-DeMarco, PhD
 Epidemiology Faculty
- Tanja Purnell, PhD
 Epidemiology Faculty
- Abi Muzzaile, MD, MHS
 Epidemiology Postdoc
- Megan Salter, PhD
 Epidemiology Postdoc (T32)
- Andrew Law, ScM
 Epidemiology Staff
- Xun Luo, MD ScM
 Analytical Staff
- Israel Olorunda, MBBS MPH
 Analytical Staff
- Anna Poon, MHS MS
 Analytical Staff

Research Assistants

Full-Time:
- Jennifer Alejo
 Amanda Brennan
 Ryan Brown
 Cassandra Delp
 Erika Jones
 Komal Kumar
 Katie Marks

Part-Time:
- Lindsay Adam
 Saad Anjum
 Kate Appel
 Olivia Berman
 Seal-Bin Han
 Diana Cantu-Reyna
 Maurice Dunn
 Laura Grau
 Teal Harrison
 Sara Hawa
 Billy Kim

Medicine/Surgery
- Ravi Vardhan, PhD
 Biostatistics: Coinvestigator
- Lucy Meoni, ScM
 Biostatistics: Coinvestigator
- Josep Coresh, MD PhD
 Epidemiology: Coinvestigator
- Linda Kao, PhD
 Epidemiology: Coinvestigator
- Lauren Nicholas, PhD
 Health Policy: Coinvestigator
- Andrew Cameron, MD PhD
 Surgery: Collaborator
- Niraj Desai MD
 Surgery: Collaborator
- Bob Montgomery, MD PhD
 Surgery: Collaborator
- Nabil Dagher, MD
 Surgery: Mentee
- Elliott Haut, MD PhD
 Surgery: Mentee (KL2; PCORI)
- Kim Steele, MD PhD
 Surgery: Mentee (K23)
- Diane Schwartz, MD
 Surgery: Mentee
- Aliaksei Pustavoitau, MD
 Anesthesiology: Mentee (R03 pending)

Medical/Graduate Students
- Natasha Gupta
 Medical Student (Doris Duke)
- Lauren Kucirka, ScM
 MD/PhD Student (F30)
- Young Mee Choi
 Epidemiology; MPH Student

Computational Science
- Sommer Gentry, PhD
 Computer Science Faculty (HRSA)
- Eric Chow, MHS
 Decision Process Programmer/Analyst
- Corey Wickliffe, MHS
 Geographic Systems Analyst

Copyright AST 2016