

Disclosures

I have no financial relationships to disclose relevant to my presentation <u>AND</u>

My presentation does not include discussion of off-label or investigational drugs

AST TRANSPLANTATION

ONE TRANSPLANT FOR LIFE

CUTTING EDGE OF

Acknowledgments

This work was supported wholly or in part by **Health Resources and Services Administration (HRSA)** contract 234-2005-370011C. The content is the responsibility of the authors alone and does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

AST TRANSPLANTATIO

ONE TRANSPLANT FOR LIFE

CUTTING EDGE OF

Learning Objectives To describe trends in organ utilization To identify factors associated with long-term and post-KAS kidney discard rate trends To discuss the relative sizes of differential sources of potential missed opportunities for transplantation

AST TRANSPLANTATION

Waste Not, Want Not Deceased donor A decedent from which at least one solid organ was recovered for the purpose of transplantation. Deceased kidney donor A deceased donor from which at least one kidney was recovered for transplantation.

Waste Not, Want Not (Interactive polling question) If none of the transplant-quality kidneys discarded under current practice was "wasted" but all were instead transplanted, would the 100,000 patients on the kidney waiting list no longer be in want? (Yes, No.

Waste Not, Want Not How many of the ~3,000 annually discarded kidneys should have been discarded? How many were "transplantable" and represent missed opportunities?

		eGFR						
		40-60	60-80	80-100	100-120	120+	All	
	KDRI (KDPI approx)							
	2.00-2.25 (90-95%)	82	34	42	30	4	192	
	1.75-2.00 (82-90%)	71	66	60	21	14	232	
	1.50-1.75 (70-82%)	88	58	71	56	33	306	
	1.25-1.50 (50-70%)	51	50	43	70	12	226	
	<=1.25 (<50%)	20	37	13	38	46	156	
	All	312	245	229	217	109	1,110	
33 kidneys	with eGFR>40, KDR ("Group B")	l<2.25	i 4	477 kidr		h eGF Group		KDRI<2.00

	Group A (eGFR>80, KDRI<2.0)	Group B (eGFR>40, KDRI<2.25)	
N (kidneys)	477	633	
Mean terminal creatinine	0.70	1.23	
Mean eGFR (CKD-EPI formula)	111.9	64.0	
DCD	33.1%	14.0%	
ECD	21.6%	44.4%	72% had at most
Glomerulosclerosis > 20%	20.1%	27.6%	one of these risk
CDC/PHS High Risk Donor	21.0%	11.4%	factors
HCV+	20.3%	11.1%	
Most of these kidneys (esp and no more than one risk f		ad good estimated	I function

Filtering Analysis Conclusions

- > 500 to 1000 kidneys ostensibly of transplant quality were discarded in 2012.
- > At least 25% of discarded kidneys
- Significant unrealized transplant potential exists among discarded kidneys

AST TRANSPLANTATION

ONE TRANSPLANT FOR LIFE

CUTTING EDGE OF

Waste Not, Want Not

Why did the kidney discard rate rise from about 5% in the late 80's to nearly 20% by 2009?

AST TRANSPLANTATION

ONE TRANSPLANT FOR LIFE:

CUTTING EDG

Waste Not, Want Not What percentage of the long term, increasing discard rate trend can be explained by the recovery of an increasingly older, comorbid, and lower quality donor pool? A. 0% B. 1-25% (Interactive polling question) C. 26-50% D. 51-75% E. 75-100% ONETRANSPLANT FOR LIFE MANY PATHWAYS TO SUCCESS

Trend Analysis Conclusions Most (>80%) of the long-run increasing discard rate trend can be explained by changes in donor factors (including biopsy, pump) A statistically significant, residual increase in the discard rate was found, suggesting Transplant center (or patient) risk aversion may have increased over time Allocation efficiency may have declined Increase in biopsies contributed to the discard rate rise Increase in pumping prevented the discard rate from rising further ONE TRANSPLANT FOR LIFE: MANY PATHWAYS TO SUCCESS

KAS Impact on Kidney Discards - Key Findings

- •Discard rate has risen about 10% after KAS
- ✓ Not explained by changes in donor KDPI
- ✓ Poorer biopsy findings appear to have played a role
- Practice changes less pumping for KDPI>85% kidneys appear to have played a role

AST TRANSPLANTATION

ONE TRANSPLANT FOR LIFE

CUTTING EDGE C

Deceased Donor Potential Study: Organ-Specific Estimates* Potential Donors ("cell 2": Age≤99th percentile, LOS≤14. % Estimate Type Non-organ specific (age≤75) Severity Score≤18) Change 38,292 N/A 38,292 Kidney-specific (no renal failure, age≤69) -24 3% 28,996 Lung-specific (no chronic pulm/circ disease, age≤65) -35.8% 24,601 Heart-specific (no CHF or pulm/circ disorder, age≤56) 18,184 -52.5% *Based on Nationwide Inpatient Sample (NIS) from 2010 A significant portion of the estimated donor potential would not be viable for kidney, lung, or heart donation. ONE TRANSPLANT FOR LIFE

Waste Not, Want Not - Solutions Improve allocation Share OPO best practices Reduce transplant center & OPO risk aversion Improve the transplant reimbursement model Recondition marginal organs Increase living donation

UNOS Research Department <u>Data Quality Team</u> Catherine Monstello, RRT, CPHQ John Beck, MSME Sherri Williams Data Analytics Team Sarah Taranto Tim Baker Jude Maghirang, MS Scientists and Analysts Wida Cherikh, PhD Bob Carrico, PhD John Rosendale, MS John Rosendale, MS Darren Stewart, MS Jennifer Wainright, PhD Marissa Clark-Quimby, MS Amber Wilk, PhD Anna Kucheryavaya, MS Mike Curry, MS Read Urban, MPH Amanda Robinson, MS Victoria Garcia, MPH Brooke Chenault, CCRA Jessie Maker, MS Yulin Cheng Eric Beeson Jessie Maker, MS Tammy Snead Tenisha Atobrah Penny Brock Sharon Graves Clay McDonald Jo Smith Alex Garza Heather Neil Denise Tripp Ann Harper, MPH Jaime Williamson Wes Rosson Alice Toll Alice Toll Subhash Jaini, MS Data Scientists Harris McGehee <u>Leadership</u> Ryan Ehrensberger, PhD, FACHE David Klassen, MD Cherri Taylor Thank you! AST TRANSPLANTATION Post-test question Numerically, the greatest opportunity to narrow the kidney transplant supply to demand gap exists among which group? A. Recovered but discarded kidneys Non-recovered kidneys from deceased donors Non-recovered kidneys from non-donors AST TRANSPLANTATION ONE TRANSPLANT FOR LIFE **Extras**

Waste Not, Want Not Did the discard rate reach 20% for the first time in 2016 due to a shift in donor quality? (no, KDRI distribution largely unchanged. Slightly lower KDRI distribution among donors, actually, likely due to slight declining trend in donor ages due to opioid epidemic.)

