Treatment of Chronic Antibody Mediated Rejection

Robert A. Montgomery MD, DPhil
Professor of Surgery
Director of the NYU Langone Transplant Institute

Disclosures:

Served on Advisory Boards for Genentech Scientific/ROCHE, True North/iPierian, Alexion, Novartis, and Hansa Medical

Received consulting fees from Orbimed, GuidePoint Global, Sucampo, Astellas, and Shire

Received research grants from Immune Tolerance Network, Viropharma, Hansa, and Alexion.

I have been involved in clinical trial design for some of the off label drugs I will be discussing.

Objectives

• To understand the phenotypes and natural history of untreated chronic AMR and its effect on graft survival.

• To gain an appreciation for treatment modalities that have a mechanism of action that might prove effective for reversing chronic AMR or prolonging allograft half-life.
De Novo HLA DSA is Common and Leads to Graft Failure

Development of De Novo HLA DSA is Associated With Allograft Loss

AMR Is Associated With A Poor Outcome

Effectiveness of therapy may depend upon:

- Target
- Strength
- Timing
- Ability of DSA to Bind Complement
- Ability of DSA to Produce Microcirculation Inflammation
- Presence of Renal Dysfunction

Chronic AMR may result from De Novo DSA formation, incomplete elimination of DSA following Acute AMR, or persistence of preformed DSA after Desensitization.

DSA Fate By Specificity After Plasmapheresis

<table>
<thead>
<tr>
<th>Specific</th>
<th>Eliminated</th>
<th>Persistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>cI</td>
<td>74%</td>
<td>26%</td>
</tr>
<tr>
<td>cII (DR, DQ)</td>
<td>56%</td>
<td>44%</td>
</tr>
<tr>
<td>DR51, 52, 53</td>
<td>20%</td>
<td>80%</td>
</tr>
<tr>
<td>Isoagglutinins</td>
<td>0%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Allograft Survival Is Lower With Class II DSA

1. Bentall et al. AJT 2013; 13:76
The Significance of AMR Varies By The Antibody’s Ability To Bind Complement: Outcomes of C4d+ vs. C4d- AMR

However, Antibodies That Do Not Bind Complement Can Have Clinical Significance

Post Treatment DSA and C1q: Is There Both A Quantitative and Qualitative Difference in DSA

\[\text{DSA+/C1q+ = Higher risk of graft loss}\]
SOC PP/IVIg Treatment Protocol is Effective Therapy for Acute AMR but has Limited Success with Chronic AMR

Anti-CD20
Steroid bolus or α-thymocyte globulin
PP: single plasma volume exchange
IVIG: 100 mg/kg following each PP treatment (CMV hyperimmune globulin)

Rituximab as Add-On Therapy to SOC did not Show Improved Outcomes for Acute AMR Compared to SOC Alone in a Multi-Center Double-Blind Randomized trial

Repeat cycle every 21 days
Poor Response to Bortezomib as Add-On to SOC for Chronic AMR

1Alachkar et al. Transplantation; 97:1240.

Bortezomib Differentially Effects Class I vs. Class II HLA Antibody

1Philogene et al., Transplantation. 2014; 98:660.

Tocilizumab (anti-IL-6R mAb) Treatment for Chronic AMR and TG: Failed SOC Patients

75 Patients with Chronic Active ABMR +/- Transplant Glomerulopathy (TG)

39 Patients Treated with IVIG + Rituximab +/- PLEX (SOC)

37 Patients who failed IVIG + Rituximab + PLEX Rx with Tocilizumab 8mg/kg monthly 6-18M

Tocilizumab vs. SOC in Patients with Established Tg

Classical Complement Pathway in Acute AMR in Sensitized KTRs

Positive Crossmatch Kidney Transplant Recipients Treated With Eculizumab: Outcomes Beyond 1 Year

Decreased ABMR 6.7% vs. 43.8% but no effect on Tg at 2 years

<table>
<thead>
<tr>
<th>Transplant Glomerulopathy in Controls versus Eculizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eculizumab*</td>
</tr>
<tr>
<td>3-4 months</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Eculizumab</td>
</tr>
<tr>
<td>P-value</td>
</tr>
</tbody>
</table>

*Residual DSA was not removed after the transplant
AMR: C1 Esterase Inhibitor Mechanistically Attractive Due To Proximal Complement Blockade\(^1\)

FDA approved for HAE: Hereditary Angioedema

C1-INH: C1 esterase inhibitor; FDP: fibrin degradation product; HMWK: high molecular weight kininogen; iC: intercellular; KK: kallikrein; MASP: MBP-associated serine protease; MBP: mannose-binding protein; TNF: tumor necrosis factor; tPA: tissue plasminogen activator

AMR: Randomized Placebo Controlled C1 INH Trial Cg on 6 mos. Biopsy\(^1\)

This study was sponsored by ViroPharma, Inc., a wholly owned subsidiary of Shire, PLC.

CG = chronic glomerulopathy 17 mg/dL = 1 U/mL

C1-INH (Berinert) as add on Therapy for Chronic AMR Unresponsive to SOC\(^1\)

\(^1\)Viglietti et al. Am J Transplant;16:1596
IdeS: IgG-degrading enzyme of *Streptococcus pyogenes*

Highly specific for human IgG

Single-cleaved IgG (sclgG)

\[\text{IgG} \rightarrow \text{sclgG} \rightarrow \text{Fc} \]

1st

2 hrs

2nd

4 hrs

Trouble in paradise: IgG rebounds by day 14 and patient cannot be given more than 2 doses because of antibody formation

IdeS Effect on Class II Antibody In A Sensitized Patient

HLA Incompatible Donor IdeS Protocol
Which of the following best describes you?

1. I know there are no effective treatments for chronic AMR so I just let nature take its course and begin to plan for the next transplant.
2. When I identify a patient with chronic AMR I increase maintenance immunosuppression and observe.
3. I aggressively treat chronic AMR when found on a for cause biopsy.
4. I monitor at risk patients with protocol biopsies and treat chronic AMR until the microcirculation inflammation resolves on re-biopsy.

Which of the following is false about the treatment of chronic AMR

A. Therapies for Acute AMR tend to have limited efficacy for chronic AMR.
B. Class I non-complement fixing antibodies are associated with the worst outcomes.
C. DSA that binds C1q leads to a higher rate of graft loss.
D. Transplant glomerulopathy can result from both acute and chronic AMR